Correlation between optical rotation sign and conformation of γ -butyrolactones

Fu-An Kang* and Cheng-Lie Yin

Department of Chemistry, Beijing Normal University, Beijing 100875, PRC

trans-4,5-Disubstituted- γ -butyrolactones are found to adopt different conformations by NMR spectroscopy; their optical rotation signs are found to depend on the conformations they assume.

Since the beginning of the study of optically active substances, many attempts have been made to devise a method for calculating optical activity or at least to learn how to predict the sign of rotation. Although some empirical rules¹ concerning the optical activities have been found, the nature of optical activity of chiral molecules is still a problem that has not been solved. Empirical methods² for the prediction of the sign and amount of rotation based on bond refractions and polarizabilities of groups in a molecule have been suggested, which has given fairly good results in quite a few cases. Here we report our discovery of the correlation between optical rotation sign and conformation of *trans*-4,5-disubstituted- γ -butyrolactones.

Recently, in the study of the physical and spectral properties of a series of *trans*-4,5-disubstituted- γ -butyrolactones 2–10 derived from (R)-(-)-5-[(1R)-menthyloxy]furan-2(5H)-one³ 1 (Scheme 1), we found that the optical rotation signs of the γ -butyrolactones correlate strictly with the relative order of the chemical shifts of the C₃ methylene protons H_{3a} and H_{3b} in the range of δ 2.0–3.0, as the substituent on the C₄ atom changes from one series to another. That is, the optical rotation signs of compounds $2,^4 3,^4 4,^5 5^4$ are all positive, where H_{3a} resonates at higher magnetic field than H_{3b} , or $\delta H_{3a} < \delta H_{3b}$; while the optical rotation signs of compounds 6,5 7,5 8,6 9,7 10⁸ are all negative, where H_{3a} resonates at lower magnetic field than H_{3b} , or $\delta H_{3a} > \delta H_{3b}$ (Table 1). This phenomenon appears somewhat confusing and unlikely considering that there is only one difference, the C₄ substituent, among these compounds. The possibility of the anisotropic effects of the C₄ substituents can be removed, because, although compounds 2-5 and compound 6 all have double bonds (C=N or C=O bonds), they still lead to a different relative order of the chemical shifts of H_{3a} and H_{3b}.

There seems to be only one interpretation for the interesting transposition of the chemical shifts of the C_3 methylene protons H_{3a} and H_{3b} , which is that the two series of compounds **2–5** and compounds **6–10** assume different conformations, respectively. γ -Butyrolactone is a five-membered ring and it is not surprising that it should adopt an envelope conformation. The preference for coplanarity of the lactone group⁹ implies that the stable conformations of the γ -butyrolactone are restricted to an enantiomeric pair, in which the C_4 atom is either below (conformation I) or above (conformation II) the lactone plane (Fig. 1). The hydrogens or substituents at C_3 , C_4 and C_5 atoms are expected to adopt quasi-axial or quasi-equatorial positions.¹⁰

In conformation I, H_{3b} , H_4 and H_5 are quasi-axial protons, while H_{3a} , menthyloxy and R^1 adopt the quasi-equatorial positions. On the contrary, in conformation II, H_{3a} , menthyloxy and R^2 assume the quasi-axial positions, while H_{3b} , H_4 and H_5 are quasi-equatorial protons. According to the proposed model¹¹ of the anisotropic effect of the carbonyl group, the quasi-equatorial protons of the C_3 methylenes in both conformations I and II should be in the shielding region of the C_2 carbonyl group while the corresponding quasi-axial protons should be in the deshielding region. As a result, in the two conformations I and II, the quasi-axial proton on the C₃ methylene is expected to resonate at lower magnetic field than the corresponding quasi-equatorial proton. Since for compounds **2–5** the relative order of the chemical shifts of H_{3a} and H_{3b} is δ H_{3a} < δ H_{3b}, it is self-evident that compounds **2–5** all assume conformation I. And because, for compounds **6–10**, the relative order of the chemical shifts of H_{3a} and H_{3b} is δ H_{3b}, it can also be seen that compounds **6–10** all adopt conformation II. Apparently, this result agrees with the previous observations that in steroidal α -acetoxy ketones,¹² α -halo ketones¹³ and α -bromo cyclohexanones,¹⁴ the α -protons of the carbonyl groups resonate at lower magnetic fields when axial than when equatorial.

In both conformations I and II, the geminal coupling constants of the C₃ methylene protons H_{3a} and H_{3b} alter in a narrow range, or ${}^{2}J_{3a,3b} = 15-18$ Hz. H_{3a}, H_{3b} and H₄ protons

Chem. Commun., 1997 579

Compound	R	Mp/°C	$[\alpha]$ (<i>c</i> , solvent) ^{<i>a</i>}	δH_{3a}	δH_{3b}	$\Delta \delta^{c}$	J/Hz				
							3a,3b	3a,4	3b,4	4,5	Ref.
2		146-147	+52 (1.0, CHCl ₃)	2.64	2.94	-0.30	17.4	11.5	3.3	0	4
3a	Me	93–94	+64 (1.0, CHCl ₃)	2.58	2.86	-0.28	16.6	11.5	3.4	0	4
3b	Et	71.5-72.5	+68 (1.0, CHCl ₃)	2.55	2.83	-0.28	16.6	11.2	3.4	0	4
4		121-122	+118 (1.0, CHCl ₃)	2.36	2.88	-0.52	17.2	11.5	3.2	0	5
5a	C ₅ H ₉	oil	+104 (2.18, hexane)	2.36	2.76	-0.40	16.0	10.8	3.7	1.8	4
5b	$C_{6}H_{11}$	oil	+94 (0.72, hexane)	2.36	2.76	-0.40	16.0	10.8	3.7	1.8	4
6		58-61	$-134 (0.83, CH_2Cl_2)^b$	2.97	2.78	+0.19	18.0	9.4	4.8	2.2	5
7a	Et	93–94	$-146 (1.1, \text{CHCl}_3)$	2.79	2.45	+0.34	17.8	6.0	1.4	0	5
7b	Pr	92–93	-132 (0.86, CHCl ₃)	2.77	2.45	+0.32	18.0	6.0	1.6	0	5
8a	H, Bn	100.6-102.7	$-101 (1.0, \text{CHCl}_3)^b$	2.8	2.3	+0.5	15	7	3	0	6
8b	Me, Bn	oil	$-109 (1.0, \text{CHCl}_3)^b$	2.7	2.1	+0.6	15	8	2	0	6
9	Ph	77.8-78	$-62 (1.0, \text{CHCl}_3)^b$	3.04	2.38	+0.66	15	8	3	0	7
10	Me	78.2–79.8	$-147 (0.9, \text{CHCl}_3)^b$	2.82	2.09	+0.73	17.6	8.2	4.0	2.2	8

^a Unless otherwise indicated, the specific rotations were measured at 578 nm at 25 °C. ^b Determined at 589 nm at 20 or 25 °C. ^c $\Delta \delta = \delta H_{3a} - \delta H_{3b}$.

 $R^1 = C(NO_2H)CO_2Et$, $C(NO_2R)CO_2Et$, $C(NOH)CO_2Et$, $C(NOR)CO_2Et$ $R^2 = COCO_2Et$, OR, NRR', SR, R

R³ = menthyloxy

Fig. 1

constitute a typical ABX coupling system with the vicinal coupling constants ${}^{3}J_{3a,4} = 10.8-11.5$ and ${}^{3}J_{3b,4} = 3.2-3.7$ Hz in conformation I, and ${}^{3}J_{3a,4} = 5.8-9.4$ and ${}^{3}J_{3b,4} = 1.2-1.8$ Hz in conformation II. In both cases, the quasi-axial proton is deshielded 0.2–0.7 ppm by the C₂ carbonyl group with respect to the quasi-equatorial proton, which is in contrast to the situation of a six-membered ring where an equatorial proton is generally deshielded 0.1–0.7 ppm by the C–C bonds with respect to the corresponding axial proton.¹⁵

The conformational analysis of the *trans*-4,5-disubstituted- γ -butyrolactones described above is partially confirmed by the X-ray analysis of (4R,5R)-(-)pyrrolidin-4-yl-5-[(1R)-menthyl-oxy]- γ -butyrolactone, mp 134.6–134.8 °C, [α]²⁰_D – 150 (*c* 1.0, CHCl₃).⁶ Its ORTEP plot shows that it adopts an envelope conformation with the C₄ atom deviating above the lactone plane and H_{3a}, menthyloxy and pyrrolidinyl assuming the quasiaxial positions, which is exactly consistent with the predicted conformation II.

If the substituents R^1 , R^2 and R^3 were displaced with hydrogens, it would be obvious that conformer I and conformer II should be enantiomers, or that one is the mirror image of the other. Since the absolute configuration of the C₄ and C₅ atoms are the same in both conformations I and II, therefore it appears to be significant that the optical rotation signs of the γ -butyrolactones depend on the conformations they assume rather than on the substituents on the lactone ring, in other words, conformer I creates a right-handed rotation, while conformer II results in a left-handed rotation. Because of the widespread occurrence of γ -butyrolactone rings in nature, *e.g.* in carbohydrates, steroids, alkaloids, nucleic acids and many other natural products, we think the conformational analysis of γ -butyrolactones by NMR spectroscopy and the correlation between optical rotation sign and conformation of γ -butyrolactones will be useful for prediction of optical activity and conformation of such compounds.

We thank Professor Yu-Ying Yin for helpful discussions. Financial support provided by the National Science Foundation and the Doctoral Program Foundation of the State Education Commission is gratefully acknowledged.

References

- V. M. Potapov, Stereochemistry, Mir, Moscow, 1978, pp. 200–207; J. A. Mills and W. Klyne, Prog. Stereochem., 1954, 1, 204; W. Klyne and P. M. Scopes, Prog. Stereochem., 1969, 4, 97; E. L. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill, New York, 1962, pp. 110–114; H. B. Kagan, Determination of Configuration by Chemical Methods, Thieme, Stuttgart, 1977, vol. 3; W. Schlenk, Angew. Chem., Int. Ed. Engl., 1965, 4, 139.
- 2 J. H. Brewster, *Top. Stereochem.*, 1967, **2**, 1; J. H. Brewster, *J. Am. Chem. Soc.*, 1959, **81**, 5475; 5483; 5493; D. D. Davis and F. R. Jensen, *J. Org. Chem.*, 1970, **35**, 3410; J. Applequist, *J. Am. Chem. Soc.*, 1973, **95**, 8255; 8258.
- 3 B. L. Feringa and J. C. De Jong, J. Org. Chem., 1988, 53, 1125.
- 4 F.-A. Kang, C.-L. Yin and S.-W. She, J. Org. Chem., 1996, 61, 5523.
- 5 F.-A. Kang, Ph.D. Dissertation, Beijing Normal University, 1996.
- 6 B. De Lange, F. Van Bolhuis and B. L. Feringa, *Tetrahedron*, 1989, 45, 6799.
- 7 B. L. Feringa and B. De Lange, Tetrahedron, 1988, 44, 7213.
- 8 J. Jansen and B. L. Feringa, Synth. Commun., 1992, 22, 1367.
- 9 A. McL. Mathieson, Tetrahedron Lett., 1963, 81.
- 10 G. M. Loudon, Organic Chemistry, Addison-Wesley, New York, 1984, p. 255.
- 11 G. J. Karabatsos, G. C. Sonnichsen, N. Hsi and D. J. Fenoglio, J. Am. Chem. Soc., 1967, 89, 5067.
- 12 K. L. Williamson and W. S. Johnson, J. Am. Chem. Soc., 1961, 83, 4623.
- 13 A. Nickon, M. A. Castle, R. Harada, C. E. Berkoff and R. O. Williams, J. Am. Chem. Soc., 1963, 85, 2185.
- 14 E. W. Garbish, J. Am. Chem. Soc., 1964, 86, 1780; K. M. Wellman and F. G. Bordwell, *Tetrahedron Lett.*, 1963, 1703.
- 15 R. M. Silverstein, G. C. Bassler and T. C. Morrill, Spectrometric Identification of Organic Compounds, Wiley, New York, 1981.

Received, 2nd January 1997; Com. 7/00073A