Activation of water by permethyltungstenocene; evidence for the oxidative addition of water

Myungok Yoon and David R. Tyler*

Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1253, USA

Water oxidatively adds to photogenerated $[W(\eta^5-C_5Me_5)_2]$ to form $[WH(OH)(\eta^5-C_5Me_5)_2]$; continued irradiation converts $[WH(OH)(\eta^5-C_5Me_5)_2]$ to $[WO(\eta^5-C_5Me_5)_2]$.

Oxidative addition is a potentially important reaction for the activation of water in solar energy conversion schemes and in other homogeneous catalytic cycles involving water.^{1–3} Here, we report the oxidative addition of water to $[W(\eta^5-C_5Me_5)_2]$ and, by analogy, to $[Mo(\eta^5-C_5H_5)_2]$. Oxidative addition reactions of water are uncommon for both thermodynamic and kinetic reasons.⁴ In fact, only a few well characterized systems involving oxidative addition of water to organometallic complexes have been reported. For example, Milstein *et al.*² demonstrated the oxidative addition of water to several iridium(i) complexes [eqn. (1)] and Yoshida¹ reported the oxidative addition of water to rhodium(i) hydrido complexes [*e.g.* eqn. (2)].

$$[Ir(PMe_3)_4]^+ + H_2O \rightarrow cis - [Ir(PMe_3)_4(H)(OH)]^+$$
(1)

$$[RhH(PPr_{i_3})]_3 + H_2O \xrightarrow{Py} [RhH_2(py)_2(PPr_{i_3})_2(OH)]$$
(2)

Oxidative addition of water has been proposed in several other studies,^{3,5} generally as part of longer reaction pathways, but these reactions are not understood mechanistically, and oxidative addition has not been established with certainty in these systems.

nv

Our interest in the oxidative addition of water to $[Mo(\eta^5-C_5H_5)_2]$ was piqued when, as part of a water-splitting project, we found that irradiation of $[MoH_2(\eta^5-C_5H_5)_2]$ in acetonitrile–water formed $[MoO(\eta^5-C_5H_5)_2]$ and H_2 in quantitative yield.⁶

$$[MoH_{2}(\eta^{5}-C_{5}H_{5})_{2}] + H_{2}O \xrightarrow{h\nu}{MeCN} [MoO(\eta^{5}-C_{5}H_{5})_{2}] + 2H_{2}$$
(3)

It is well established that irradiation of $[MH_2(\eta^5-C_5H_5)_2]$ (M = Mo, W) forms H₂ and $[M(\eta^5-C_5H_5)_2]$,⁷ and a consideration of possible mechanisms for reaction (3) led us to hypothesize that oxidative addition of water to $[Mo(\eta^5-C_5H_5)_2]$ was involved. In order to investigate this hypothesis, we studied the photochemistry of the related $[WH_2(\eta^5-C_5Me_5)_2]$ molecule rather than $[MoH_2(\eta^5-C_5H_5)_2]$ because $[WH(OH)(\eta^5-C_5Me_5)_2]$ is a relatively stable molecule, whereas $[MoH(OH)(\eta^5-C_5H_5)_2]$ has not been reported.⁸ {Note that the $[WH(OH)(\eta^5-C_5Me_5)_2]$

Table 1 ¹H NMR chemical shifts in various solvents

was prepared by LiAlH₄ reduction of $[WO(\eta^5-C_5Me_5)_2]$, not by reaction of water with the $[W(\eta^5-C_5Me_5)_2]$ intermediate.}

Irradiation of $[WH_2(\eta^5-C_5Me_5)_2]$ in CD₃CN (37 mm; $\lambda >$ 340 nm) in the presence of water (3.7 m) for 7.5 h caused a colour change from yellow to yellow-green.[†][‡] ¹H and ¹³C NMR analysis (Table 1) of the solution showed the presence of the oxidative addition product $[WH(OH)(\eta^5-C_5Me_5)_2]$ (12%), as well as $[WO(\eta^5-C_5Me_5)_2]$ (12%), $[WH(\eta^5-C_5Me_5)_2(\eta^6 C_5Me_4CH_2$] (9%), and unreacted [WH₂(η^5 -C₅Me₅)₂] (67%), eqn. (4) and Scheme 1. $[WH(\eta^5-C_5Me_5)(\eta^6-C_5Me_4CH_2)]$ is the known intramolecular C-H oxidative addition product that forms from the $[W(\eta^5-C_5Me_5)_2]$ intermediate.§ The formation of this product indicates that $[W(\eta^5-C_5Me_5)_2]$ is forming as an intermediate in the reaction, as planned. Continued irradiation of the reaction solution for a total of 15 h caused the solution to turn green (λ_{max} = 596 nm), at which point ¹H and ¹³C NMR analysis showed [WH(OH)(n⁵-C₅Me₅)₂] (27%), an increased amount of $[WO(\eta^5-C_5Me_5)_2]$ (59%), and unreacted $[WH_2(\eta^5-C_5Me_5)_2]$ $C_5Me_5_2$] (14%).

$$[WH_2(\eta^5-C_5Me_5)_2] \xrightarrow{hv} [WH(OH)(\eta^5-C_5Me_5)_2]$$

+ [WO(
$$\eta^{5}$$
-C₅Me₅)₂] + [WH(η^{5} -C₅Me₅)(η^{6} -C₅Me₄CH₂)] (4)

The results above show that water oxidatively adds to the photogenerated $[W(\eta^5-C_5Me_5)_2]$ intermediate, and they also suggest that $[WH(OH)(\eta^5-C_5Me_5)_2]$ is an intermediate on the pathway from $[WH_2(\eta^5-C_5Me_5)_2]$ to $[WO(\eta^5-C_5Me_5)_2]$. Consistent with this latter hypothesis, irradiation of $[WH(OH)(\eta^5-C_5Me_5)_2]^{\P}$ (28 mm; $\lambda > 340$ nm) in CD₃CN-H₂O ([H₂O] = 3.7 m) for 7.5 h gave $[WO(\eta^5-C_5Me_5)_2]$ as the only product {38% yield with 62% $[WH(OH)(\eta^5-C_5Me_5)_2]$ still unreacted}, eqn. (5).

$$[WH(OH)(\eta^{5}-C_{5}Me_{5})_{2}] \xrightarrow[CD_{3}CN-H_{2}O]{} [WO(\eta^{5}-C_{5}Me_{5})_{2}]$$

$$[WH(\eta^{5}-C_{5}Me_{5})(\eta^{6}-C_{5}Me_{4}CH_{2})]$$

$$(5)$$

$$[WH_{2}(\eta^{5}-C_{5}Me_{5})_{2}] \xrightarrow{h_{V}, -H_{2}} [W(\eta^{5}-C_{5}Me_{5})_{2}] \xrightarrow{H_{2}O} [WH(OH)(\eta^{5}-C_{5}Me_{5})_{2}]$$
$$|_{h_{V}}$$

↓ [WO(η⁵-C₅Me₅)₂]

	Assignment	$[WH_2(\eta^5-C_5Me_5)_2]$	$[WO(\eta^{5}-C_{5}Me_{5})_{2}]$	$[WH(OH)-(\eta^{5}-C_{5}Me_{5})_{2}]$	$[WH(\eta^{5}-C_{5}Me_{5})-(\eta^{6}-C_{5}Me_{4}CH_{2})]^{a}$
C_6D_6	C5Me5 W–OH	1.98	1.87	$1.81 \\ -0.51$	1.86
	W–H	-11.25		-11.05	-11.94
CD ₃ CN	C ₅ Me ₅ W–OH	1.95	1.90	$1.82 \\ -0.88$	1.87
	W–H	-11.86		-11.47	-12.39
CD ₃ CN-H ₂ O	C ₅ Me ₅	1.95	1.92	1.85	1.87
(15/1)	W–H	-12.01		-11.57	-12.43

^a For comparison to the other complexes, only the C₅Me₅ and hydride resonances are reported in this Table. For the complete spectrum, see footnote ¶.

Also consistent with the hypothesis, irradiation ($\lambda > 340$ nm; 7.5 h) of [WH(OH)(η^5 -C₅Me_5)_2] (22 mm) in dry CD₃CN gave [WO(η^5 -C₅Me_5)_2] (19%), [WH₂(η^5 -C₅Me_5)_2] (10%), and a small amount of [WH(η^5 -C₅Me_5)(η^6 -C₅Me_4CH₂)] (1%), with 70% of [WH(OH)(η^5 -C₅Me_5)_2] still unreacted.||

$$[WH(OH)(\eta^{5}-C_{5}Me_{5})_{2} \xrightarrow{h\nu} [WO(\eta^{5}-C_{5}Me_{5})_{2}] + [WH_{2}(\eta^{5}-C_{5}Me_{5})_{2}] + [WH(\eta^{5}-C_{5}Me_{5})(\eta^{6}-C_{5}Me_{4}CH_{2})]$$
(6)

Several additional experiments provided further insights into the reactions presented in Scheme 1. Irradiation ($\lambda > 340$ nm) of $[WH_2(\eta^5-C_5Me_5)_2]$ (37 mm) for 7.5 h in CD₃CN containing only small amounts of water (59 mm) gave [WH(η^5 -C₅Me₅)(η^6 - $C_5Me_4CH_2$ (58%) as the major product along with a small amount of $[WO(\eta^5-C_5Me_5)_2]$ (3%) and unreacted $[WH_2(\eta^5 C_5Me_5)_2$] (39%). {Irradiation ($\lambda > 340$ nm) of [WH₂(η^5 - $C_5Me_5)_2$] (22 mm) for 23 h in dry CD₃CN gave [WH(η^5 - C_5Me_5 (η^6 - $C_5Me_4CH_2$)] as the only product. } The formation of $[WH(\eta^5-C_5Me_5)(\eta^6-C_5Me_4CH_2)]$ was reversible, however, as irradiation of this compound in CD_3CN (16 mm; $\lambda > 340$ nm) for 7.5 h in the presence of a large excess of water (3.7 m) gave $[WH(OH)(\eta^5-C_5Me_5)_2]$ (21%) and $[WO(\eta^5-C_5Me_5)_2]$ (79%). Continued irradiation for a total of 18 h gave complete conversion to $[WO(\eta^5\text{-}C_5Me_5)_2].$ In the reverse reaction, it is suggested that reductive elimination of a C-H bond occurs to give $[W(\eta^5-C_5Me_5)_2]$, which then reacts with H₂O to form $[WH(OH)(\eta^{5}-C_{5}Me_{5})_{2}]$ and then $[WO(\eta^{5}-C_{5}Me_{5})_{2}]$.

The mechanism for the conversion of $[WH(OH)(\eta^5-C_5Me_5)_2]$ to $[WO(\eta^5-C_5Me_5)_2]$ is uncertain. One possibility is a mechanism suggested by Bercaw and Parkin for the thermal conversion of $[WH(OH)(\eta^5-C_5Me_5)_2]$ to $[WO(\eta^5-C_5Me_5)_2]$ (at 80 °C).¹⁰ Their mechanism is shown in reactions (7) and (8).

 $2 [WH(OH)(\eta^{5}-C_{5}Me_{5})_{2}] \rightarrow [WH_{2}(\eta^{5}-C_{5}Me_{5})_{2}] + [W(OH)_{2}(\eta^{5}-C_{5}Me_{5})_{2}]$ (7)

$$2 [W(OH)_2(\eta^5 - C_5 Me_5)_2] \rightarrow [WO(\eta^5 - C_5 Me_5)_2] + H_2 O \quad (8)$$

The products of reaction (6) are consistent with this pathway. According to this mechanism $[WH(\eta^5-C_5Me_5)(\eta^6-C_5Me_4CH_2)]$ is formed in a secondary photolysis by irradiation of $[WH_2(\eta^5-C_5H_5)_2]$, not by a route involving reductive elimination of water from $[WH(OH)(\eta^5-C_5Me_5)_2]$. It is not obvious, however, why the mechanism would be photochemically activated. Another possible mechanism is a 1,2-elimination of H₂ from $[WH(OH)(\eta^5-C_5Me_5)_2]$. Consistent with this pathway is the observation that $[WO(\eta^5-C_5Me_5)_2]$ is the only product formed by irradiation of $[WH(OH)(\eta^5-C_5Me_5)_2]$ in the presence of an excess of water [eqn. (5)]. However, the formation of $[WH_2(\eta^5-C_5Me_5)_2]$ in eqn. (6) is not accounted for by this mechanism.

In summary, the spectroscopic observation of $[WH(OH)(\eta^5-C_5Me_5)_2]$ provides convincing evidence for the oxidative addition of water to $[W(\eta^5-C_5Me_5)_2]$ and by analogy to $[Mo(\eta^5-C_5H_5)_2]$. The $[WH(OH)(\eta^5-C_5Me_5)_2]$ molecule is photoreactive and it is converted to $[WO(\eta^5-C_5Me_5)_2]$. We are continuing to investigate the mechanisms of these reactions and their applications to water splitting.

Acknowledgment is made to the Department of Energy for the support of this research.

Footnotes

 $\dagger~[WH_2(\eta^5\text{-}C_5Me_5)_2]$ and $[WO(\eta^5\text{-}C_5Me_5)_2]$ were prepared by literature procedures.^8

Spectroscopic data: $[WH_2(\eta^5-C_5Me_5)_2]$ (see also Table1 and refs. 8 and 9). ${}^{13}C{}^{1}H{}$ NMR (C_6D_6 , 300 MHz, in ppm relative to SiMe₄): δ 12.40 (s, CH₃), 90.09 (s, CCH₃). ${}^{13}C{}^{1}H{}$ NMR (CD₃CN): δ 12.42 (s, CH₃), 91.05 (s, CCH₃). ${}^{13}C{}^{1}H{}$ NMR (CD₃CN-H₂O; 15 : 1): δ 12.10 (s, CH₃), 90.96 (s, CCH₃). EIMS (70 eV): m/z 454 (M⁺ – 2, 100% with correct isotope pattern). UV–VIS (MeCN) $\lambda_{max} = 281$ nm ($\epsilon = 7221$ dm³ mol⁻¹ cm⁻¹).

 $[WO(\eta^{5}-C_{5}Me_{5})_{2}] (see also Table 1). {}^{13}C{}^{1}H} NMR (CD_{3}CN): \delta 11.72 (s, CH_{3}), 99.02 (s, CCH_{3}). {}^{13}C{}^{1}H} NMR (CD_{3}CN-H_{2}O; 15:1): \delta 11.49 (s, CH_{3}). {}^{13}C{}^{1}H} NMR (CD_{3}CN-H_{2}O; 15:1): \delta 11.49 (s, CH_{3}). {}^{13}C{}^{1}H NMR (CD_{3}CN-H_{2}O; 15:1): \delta 11.40 (s, CH_{3}). {}^{1$

CH₃), 99.38 (s, CCH₃). UV–VIS (MeCN) $\lambda_{max}=596$ nm ($\epsilon=113$ dm³ mol $^{-1}$ cm $^{-1}$). In addition to the NMR spectra, the band at 596 nm was a useful diagnostic that indicates the formation of $[WO(\eta^5-C_5Me_5)_2]$ in a reaction.

‡ A typical photolysis experiment was performed as follows. To an NMR tube attached to a stopcock was loaded 10 mg of $[WH_2(\eta^5-C_5Me_5)_2]$ (21.9 µmol) and CD₃CN (0.6 ml) in a dry box. Distilled water (40 µl, 2.2 mmol), which had been degassed by three freeze–pump–thaw (FPT) cycles, was syringed into the tube under N₂. After the resulting solution was degassed by two FPT cycles, the tube was flame-sealed. During the photolysis, the solution in the NMR tube was cooled with ice–water and shaken frequently. The solutions were irradiated using a high-pressure Hg arc lamp (200 W) fitted with a water filter and a UV cutoff filter (Corning Glass CS 0-52). When the chemical resonances of $[WH_2(\eta^5-C_5Me_5)_2]$ overlapped with those of solvents, the amount of $[WH_2(\eta^5-C_5Me_5)_2]$ was estimated by subtracting integrations corresponding to solvent, which in turn were calculated using their ratios to added SiMe₄ in stock NMR solvents.

 $\$ The complex [WH($\eta^{5-}C_5Me_5)(\eta^{6-}C_5Me_4CH_2)$] was reported to form from [W($\eta^{5-}C_5Me_5)_2$] in (*a*) photolysis of [WH₂($\eta^{5-}C_5Me_5)_2$] in pentane,⁹ (*b*) reaction of [W(H)Cl($\eta^{5-}C_5Me_5)_2$] with MeLi in toluene at 100 °C,⁸ (*c*) reaction of [WCl₂($\eta^{5-}C_5Me_5)_2$] with MeLi in C₆D₆ at 80 °C,⁸ and (*d*) reaction of [WCl₂($\eta^{5-}C_5Me_5)_2$] with Na–Hg in thf.^{9b}

The preparation of $[WH(OH)(\eta^5-C_5Me_5)_2]$ was modified from the literature procedure⁸ as follows. Diethyl ether (20 ml) was added to a mixture of [WO(η⁵-C₅Me₅)₂] (240 mg; 0.51 mmol) and LiAlH₄ (180 mg; 4.75 mmol) at -77 °C. The reaction mixture was warmed to room temp. and stirred for 2 h, producing an orange-brown solution. After unreacted LiAlH₄ was filtered off, and solvent was removed, the residual solid was chromatographed on basic alumina.6b The first fraction (hexanes) was $[WH(\eta^5-C_5Me_5)(\eta^6-C_5Me_4CH_2)]$ (45.9 mg, 0.10 mmol, 19.6%). The second fraction (hexanes-ether = 1:1) was $[WH_2(\eta^5-C_5Me_5)_2]$ (9.3 mg, 0.02 mmol, 3.9%), and the third fraction was a negligible amount of unreacted [WO(η^5 -C₅Me₅)₂]. The last fraction (ether-thf = 1:1) was [WH(OH)(n⁵-C₅Me₅)₂] (51.5 mg, 0.11 mmol, 21.4%). ¹H NMR data for [WH(η⁵-C₅Me₅)(η⁵,η¹-C₅Me₄CH₂)] in CD₃CN: δ 1.87 [15 H, s, C₅(Me₅)], 1.51, 1.80 and 2.06 [each 3 H, s, C₅(Me)₄CH₂], 2.01 [3H, d, C₅(Me)₄CH₂, $J_{\rm HW(H)} = 3$ Hz], 2.87 and 3.08 [each 1 H, m, C₅(Me)₄CH₂], -12.39 (1 H, br m, $J_{WH} = 93$ Hz). Spectroscopic data for [WH(OH)(η^5 -C₅Me₅)₂] (see also Table 1). ¹³C{¹H} NMR (CD₃CN): δ 13.14 (s, CH₃), 108.43 (s, CCH₃). ¹³C{¹H} NMR (CD₃CN-H₂O; 15:1): δ 13.36 (s, CH₃), 109.30 (s, CCH₃). IR (KBr pellet, cm⁻¹): 2973m, 2904s, 2860m, 2725w, 1906m (WH), 1378s, 1265m, 1102w, 1070w, 1024m, 934w, 872m, 801m, 692w. The resonance of the OH proton could be located at $\delta - 0.51$ (C₆D₆), which broadens upon addition of a stoichiometric amount of water or ethanol, and disappears with addition of an excess of water.

|| Further irradiation for a total of 30 h produced a solution containing a decreased amount of $[WH_2(\eta^5-C_5Me_5)_2]$ (1%), an increased amount of $[WH(\eta^5-C_5Me_5)(\eta^6-C_5Me_4CH_2)]$ (18%), $[WO(\eta^5-C_5Me_5)_2]$ (49%), and unreacted $[WH(OH)(\eta^5-C_5Me_5)_2]$ (42%).

References

- 1 T. Yoshida, T. Okano, K. Saito and S. Otsuka, *Inorg. Chim. Acta*, 1980, 44, L135.
- 2 D. Milstein, J. C. Calabrese and I. D. Williams, J. Am. Chem. Soc., 1986, 108, 6387.
- 3 G. L. Hillhouse and J. E. Bercaw, J. Am. Chem. Soc., 1984, 106, 5472.
- 4 P. E. M. Siegbahn, R. A. Blomberg and M. Svensson, J. Phys. Chem., 1993, 97, 2564.
- 5 M. A. Bennett and T. Yoshida, J. Am. Chem. Soc., 1978, 100, 1750; M. M. T. Khan, S. B. Halligudi and S. Shukla, Angew. Chem., Int. Ed. Engl., 1988, 27, 1735.
- 6 (a) G. T. Baxley, T. M. Aukett and D. R. Tyler, manuscript in preparation; (b) N. D. Silavwe, M. R. M. Bruce, C. E. Philbin and D. R. Tyler, *Inorg. Chem.*, 1988, **27**, 4669.
- 7 G. L. Geoffroy and M. S. Wrighton, *Organometallic Photochemistry*, Academic Press, New York, 1979, p. 279.
- 8 G. Parkin and J. E. Bercaw, Polyhedron, 1988, 7, 2053.
- 9 (a) F. G. N. Cloke, J. C. Green, M. L. H. Green and C. P. Morley, J. Chem. Soc., Chem. Commun., 1985, 945; (b) F. G. N. Cloke, J. P. Day, J. C. Green, C. P. Morley and A. C. Swain, J. Chem. Soc., Dalton Trans., 1991, 789.
- 10 G. Parkin and J. E. Bercaw, Organometallics, 1989, 8, 1172.

Received, 3rd January 1997; Com. 7/00087A