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First enantiocontrolled syntheses of (+)-uleine and (+)-dasycarpidone

Masanori Saito, Mitsuhiro Kawamura, Kou Hiroya and Kunio Ogasawara*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77, Japan

Stereocontrolled syntheses of (+)-uleine and (+)-dasycarpi-
done are achieved for the first time in an enantiocontrolled
way starting from (+)-norcamphor.

Although a number of racemic syntheses of the uleine type
indole alkaloids have been reported,1 no enantiocontrolled
synthesis has been disclosed to date. We report here the first
stereo- and enantio-controlled construction of the representa-
tives of this group, (+)-uleine 1 and (+)-dasycarpidone 2, using
(+)-norcamphor 3 as starting material (Scheme 1).2

(+)-Norcamphor 3† was first transformed into the d-lactone
43a which was then condensed with benzylamine to give the
amide alcohol 5,‡ mp 94–95 °C, [a]D

3321.95 (c 0.55, CHCl3),
in 75% yield. Hydride reduction of 5 followed by N-carbamoyl-
ation of the resulting amine yielded the carbamate 6, [a]D

27

20.76 (c 1.0, CHCl3), which was oxidized to give the
cyclopentanone 7, [a]D

30 +58.0 (c 0.9, CHCl3), in 90% overall
yield. Transformation of 7 into the a-diketone monothioketal3,4

8, mp 72–74 °C, [a]D
29 243.5 (c 0.742, CHCl3), followed by

alkaline cleavage3–5 yielded the acyclic methyl ester 9, [a]D
31

+43.1 (c 0.3, CHCl3), in 59% overall yield after treatment of the
resulting acid with diazomethane. Exposure of 9 to iodoethane
in the presence of sodium hexamethyldisilazide in THF
containing HMPA at 278 °C afforded the a-ethyl ester 10 in
73% yield as an inseparable epimeric mixture with recovery of
14% of the starting material. The dithiane group of 10 was
hydrolysed to give the aldehyde 11 in 92% yield which was
treated with dimethyl 1-diazo-2-oxopropylphosphonate6 in the
presence of potassium carbonate to furnish the terminal
acetylene 12 in 90% yield. Compound 12 was then converted
into the 1,3-dioxane 14 in 72% overall yield via the aldehyde 13
by sequential reduction, oxidation and acetalization7 (Scheme
2).

To construct the indole framework,8,9 the acetylene 14 was
first coupled with ethyl (2-iodophenyl)carbamate in the pres-
ence of dichlorobis(triphenylphosphine)palladium(ii) [PdCl2-
(PPh3)2] and copper(i) iodide in triethylamine10 to give the
arylacetylene 15 in 86% yield. Cyclization was then carried out
by treating 15 with sodium ethoxide in ethanol8,9 at reflux to
furnish the indole 17 in 64% yield accompanied by 31% of the
de-N-acylated product 16 which, after separation, was treated
with ethyl chlorocarbonate in pyridine to recover the carbamate
15 in 81% yield. The indole 17, on reflux with TFA, afforded
stereoselectively the tetracyclic amine 20, [a]D

292155.3 (c 0.7,
CHCl3), in 54% yield accompanied by the readily separable
20-epimer (4%) by spontaneous deacetalization, decarbamoyla-
tion and stereoselective cyclization. The observed stereo-

selectivity may be rationalised by intervention of the enamine
intermediate 18 which allowed epimerization of the C-20
stereogenic centre and stereoselective generation of the imi-
nium intermediate 19 followed by its stereoselective cycliza-
tion2a,b,d under the conditions. Since the amine 20 was found to
be unstable under the oxidation conditions, it was first
transformed into the carbamate 21, [a]D

28 +89.4 (c 0.4, CHCl3),
in 74% overall yield by sequential catalytic debenzylation and
carbamoylation.2d The resulting carbamate 21 was then treated
with pyridinium dichromate (PDC) on Celite in the presence of
tert-butyl hydroperoxide (TBHP)11 in benzene to afford the
16-ketone 22, [a]D

28 +231.8 (c 0.2, CHCl3), in 54% yield.
Concurrent N-deprotection and N-methylation of 22 under the
reductive conditions2d in the presence of 37% formalin afforded
(+)-dasycarpidone 2, [a]D

30 +63.1 (c 0.7, CHCl3) [natural:
[a]D

26 +64.7 (c 1.02, CHCl3)],12 in 83% yield. By following the
established procedure,2a,b (+)-dasycarpidone 2 obtained was
transformed into (+)-uleine 1, [a]D

27 +18.2 (c 0.3, CHCl3)
[natural: [a]D

25 +16.5 (c 0.91, CHCl3);12 [a]D
27 +20 (c 0.94,

CHCl3)13], in 71% overall yield on treatment with methyl-

Scheme 1

Scheme 2 Reagents and conditions: i, BnNH2, 180 °C (75%); ii, LAH, THF,
reflux; iii, Bo2O, aq. NaOH room temp. (95%); iv, pyridinium chloro-
chromate (PCC), NaOAc, CH2Cl2 (95%); v, pyrrolidine, benzene, reflux,
then TsS(CH2)3STs, Et3N, MeCN (59%); vi, KOH, ButOH, 60 °C, acid
workup, then CH2N2 (99%); vii, NaN(SiMe3)2, EtI, THF, HMPA, 278 °C
(73%, recovery of 14% of 9); viii, Hg(ClO4)2, CaCO3, 20% aq. THF (92%);
ix, AcC(NN2)P(O)(OMe)2, K2CO3, MeOH, room temp. (90%); x, LAH,
THF; xi, Swern oxidation (87%); xii, Me3SiO(CH2)3OSiMe3, Me3SiOTf
(cat.), THF, 278 °C (83%)
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lithium followed by dehydration of the resulting tertiary alcohol
with neutral alumina.

Footnotes

* E-mail: konol@mail.cc.tohoku.ac.jp
† Prepared from (+)-endo-norborneol (ca. 95% ee) kindly provided by
Chisso Corporation, Japan.

‡ Satisfactory analytical (combustion and/or high resolution mass) and
spectral (IR, 1H NMR, and MS) data were obtained for all new isolable
compounds.
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Scheme 3 Reagents and conditions: i, PdCl2(PPh3)2 (10 mol%), CuI (10
mol%), 2-IC6H4NHCO2Et, Et3N, reflux (86%); ii, NaOEt, EtOH, reflux
(16: 31% and 17: 64%); iii, ClCO2Et, pyridine (81%); iv, TFA, reflux (54%;
20-epimer 4%); v, 10% Pd–C, HCO2NH4, MeOH, reflux, then ClCO2Bn,
K2CO3, CH2Cl2 (74%); vi, PDC–Celite, TBHP, benzene, room
temp. (54%); vii, H2, 10% Pd–C, 37% formalin, MeOH (83%); viii, MeLi,
THF, then neutral Al2O3 (activity I), 120 °C (71% overall)
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