$^{13}C-^{15}N$ Coupling constants in a series of twisted amides: relationships with C(O)–N twist angles

Shinji Yamada,*a[†] Maki Nakamura^b and Ichiro Kawauchi^b

^a Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112, Japan

^b Department of Materials Science, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-12, Japan

For a series of ¹⁵N-labelled amides 1a–e with increasing C(O)–N twist angles, the one-bond ¹³C–¹⁵N coupling constants decrease, whereas the two-bond ¹³C–¹⁵N coupling constants increase.

It is well-documented that amides have planar geometry due to the partial double bond character of the C(O)–N bond resulting from amide resonance.¹ However, a number of peptides, proteins and enzymes have been proved by X-ray analysis to contain non-planar deformation in the amide moiety.² Furthermore, Schreiber and his colleagues have recently suggested that the orthogonally orienting α -keto amide groups of the immunosuppressive agent FK506 and rapamycin may mimic the twisted amide transition-state of peptide substrates of FKBP rotamase.³ Such twisted structures are of significant interest in relation to their biochemical functions. Synthetic twisted amides have also received considerable attention with regard to their structure and reactivity.^{4,5}

The principal method for studying the non-planarity of amide bonds in solution is ¹³C, ¹⁵N and ¹⁷O NMR spectroscopy.^{6,7} Although C–N coupling constants⁸ seem to be another promising parameter for elucidation of amide deformation about the C(O)–N bond, no investigations have been reported. Here we describe the relationships between C(O)–N twist angles and ¹J_{C,N} and ²J_{C,N} values in a series of twisted amides.

A series of twisted amides **1a**–**e**,⁷‡ enriched to 99% with ¹⁵N, was synthesized *via* several steps from commercially available [¹⁵N] glycine and [¹⁵N] leucine. The C–N coupling constants of **1a–e** were measured at 100.04 MHz using ¹³C NMR spectroscopy. Table 1 shows the ¹*J*_{C,N} and ²*J*_{C,N} values, and the previously reported C(O)–N twist angles τ and the χ_N values,^{7,9} ¹*J*_{C(O),N} lies in the range of 2.5–7.8 Hz in CDCl₃, and 3.2–7.9 Hz in [²H₆]DMSO. The plots of ¹*J*_{C(O),N} *versus* τ are a little scattered, but a rough correlation exists between them, as shown in Fig. 1(*a*). Thus, as the twist angle increases, the ¹*J*_{C(O),N} value decreases. By assuming the Fermi contact mechanism to be dominant, it has been reported that ¹*J*_{C,N} depends on the percentage s-character of the C and N atoms.¹⁰ However, there are no clear-cut relationships between the ¹*J*_{C(S),N} and ¹*J*_{C,N}

Table 1 J _{C,N}	values, λ	l_N and	twist	angle '	τ
--------------------------	-------------------	-----------	-------	---------	---

values and the $\boldsymbol{\chi}_N$ value, which represents the extent of pyramidalization of the N atom. These suggest that the contribution of the contact term to ${}^{1}J_{C(O),N}$ is not predominant in this case. Therefore, the orbital and dipolar terms,¹¹ which depend upon the p-electron distribution, may be the dominant factors governing ${}^{1}J_{C.N.}$ The importance of the effect of the p-electron distribution on ${}^{1}J_{C,N}$ has been reported in substituted anilines: steric inhibition of nitrogen lone-pair delocalization in N,N-dimethylaniline derivatives reduces the ${}^{1}J_{C,N}$ value.¹² A similar explanation can be applied to the present case. Thus, rotation about the amide bond causes a decrease in the C-N double bond character resulting from amide resonance; consequently, the $J_{C,N}$ decreases. When [²H₆]DMSO was used as the NMR solvent, the slope changed, becoming somewhat gentler compared to that in CDCl₃. This is because the polar solvent easily stabilizes the canonical form II (Scheme 1).

The ${}^{2}J_{C7,N}$ values are in the range 5.6–7.1 Hz, which is much narrower than that of ${}^{1}J_{C(O),N}$. On the other hand, ${}^{2}J_{C5,N}$ was not observed for any of the amides. In contrast to the relationship between ${}^{1}J_{C(O),N}$ and τ , the ${}^{2}J_{C7,N}$ value increases with increasing the twist angle, as shown in Fig. 1(*b*). It has been assumed that ${}^{2}J_{C,N}$ depends on the dihedral angle between the lone pair orbital and the C α –C β bond. For example, ${}^{2}J_{C,N}$ of quinuclidine, whose dihedral angle is 180°, is only 0.2 Hz, whereas that of propylamine is 1.2 Hz.¹³ Because the dihedral angle of the series of amides decreases with increasing C(O)–N twist angle, as shown in Fig. 2, the present results may also be

$O = \begin{bmatrix} C R_3 & S \\ 0 & 1 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} C R_3 & S \\ 0 & 1 & 2 \\ 4 & 5 \end{bmatrix}$										
	Compound	$^{1}J_{\mathrm{C(O),N}}{}^{a}$ /Hz	$^{1}J_{\mathrm{C(O),N}}{}^{b}$ /Hz	$^{1}J_{\mathrm{C(S),N}}{}^{a}$ /Hz	$^{1}J_{\mathrm{C4,N}}{}^{a}$ /Hz	² <i>J</i> _{C7,N} ^{<i>a</i>} /Hz	χ_{N} (°)	τ (°)		
	1a 1b 1c 1d 1e	7.8 7.5 7.0 2.9 2.5	7.9 7.6 7.1 3.5 3.2	8.9 8.7 8.7 9.1 9.1	10.2 10.0 6.9 7.8 6.8	5.8 5.6 6.0 7.1 6.7	11.9 13.4 12.2 29.5 31.4	20.1 10.2 36.5 74.3 65.5		

^{*a*} In CDCl₃. ^{*b*} In [²H₆]DMSO.

ascribed to the directional effect of the nitrogen lone pair orbital.

Kainosho and Nagao reported¹⁴ that the ¹³C–¹⁵N coupling constant between the Phe-97 carbonyl carbon and the ser-98 nitrogen in *Streptomyces* subtilisin inhibitor is unusually small, and they explained that it is a result of the non-planarity of peptide bonds in β -sheets and α -helices. The present result seems to support their hypothesis.

Financial support, in the form of Grants-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Japan (No. 08640755 and 08554026), is acknowledged.

Fig. 1 Plots of (*a*) ${}^{1}J_{C(O),N}$ (\Box = in CDCl₃, \bigcirc = in [${}^{2}H_{6}$]DMSO) and (*b*) ${}^{2}J_{C7,N}$ vs. τ

Fig. 2

Footnotes

† E-mail: yamada@hososipc.chem.ocha.ac.jp

[‡] EI-Mass spectral data for compounds **1a**–**e** at an ionizing voltage of 70 eV are as follows: **1a**, *m*/*z* (%) 162 (40, M⁺), 120 (28), 60 (36), 43 (100); **1b**, *m*/*z* (%) 238 (12, M⁺), 210 (5), 118 (69), 91 (100); **1c**, *m*/*z* (%) 190 (76, M⁺), 148 (35), 101 (72), 43 (100); **1d**, *m*/*z* (%) 204 (39, M⁺), 161 (3), 120 (38), 85 (34), 57 (100); **1e**, *m*/*z* (%) 260 (11, M⁺), 203 (4), 175 (9), 57 (100).

References

- L. Pauling, *The Nature of the Chemical Bond*, Cornell University Press, Ithaca, NY, 1960; M. B. Robin, F. A. Bovey and H. Basch, *The Chemistry of Amides*, ed. J. Zabicky, Interscience, New York, 1970, ch. 1, p. 1.
- G. N. Ramachandran and A. S. Kolaskar, *Biochim. Biophys. Acta*, 1973, 303, 385; D. E. Stewart, A. Sarkar and J. E. Wampler, *J. Mol. Biol.*, 1990, 214, 253; A. L. Morris, M. W. MacArthur, E. G. Hutchinson and J. M. Thornton, *Proteins: Struct. Funct. Genet.*, 1992, 12, 345; M. W. MacArthur and J. M. Thornton, *J. Mol. Biol.*, 1996, 264, 1180.
- 3 M. K. Rosen, R. F. Standaert, A. Galat, M. Nakatsuka and S. L. Schreiber, *Science*, 1990, **243**, 863; M. W. Albers, C. T. Walsh and S. L. Schreiber, *J. Org. Chem.*, 1990, **55**, 4984; M. K. Rosen and S. L. Schreiber, *Angew. Chem.*, *Int. Ed. Engl.*, 1992, **31**, 384; S. T. Park, R. A. Aldape, O. Futer, M. T. DeCenzo and D. J. Livingston, *J. Biol. Chem.*, 1992, **267**, 3316.
- 4 For reviews, see A. Greenberg, Structure and Reactivity, ed. J. F. Liebman and A. Greenberg, VCH, Weinheim, 1988, ch. 4, p. 139;
 T. G. Lease and K. J. Shea, Advances in Theoretically Interesting Molecules, JAI Press, Greenwich, 1992, vol. 2, p. 79.
- 5 For recent reports on twisted amides, see S. Yamada, Angew. Chem., Int. Ed. Engl., 1993, 32, 1083; T. G. Lease and K. J. Shea, J. Am. Chem. Soc., 1993, 115, 2248; A. P. Evans, A. B. Holmes, I. Collins, P. R. Raithby and K. Russell, J. Chem. Soc., Chem. Commun., 1995, 2325; S. Yamada, T. Sugaki and K. Matsuzaki, J. Org. Chem., 1996, 61, 5932.
- 6 A. J.Bennet, V. Somayaji, R. S. Brown and B. D. Santarsiero, J. Am. Chem. Soc., 1991, 113, 7563; I. P. Gerothanassis, A. Troganis and C. Vakka, Tetrahedron, 1995, 51, 9493.
- 7 For non-labelled 1a-e, see S. Yamada, J. Org. Chem., 1996, 61, 941.
- 8 For reviews, see G. C. Levy and R. L. Lichter, *Nitrogen-15N Nuclear Magnetic Resonance Spectroscopy*, Wiley, New York, 1979; M. Witanowski, L. Stefaniak and G. A. Webb, *Annual Reports on NMR Spectroscopy*, Academic Press, London, 1986, vol. 18.
- 9 For definitions of τ and χ_N , see F. K. Winkler and J. D. Dunitz, *J. Mol. Biol.*, 1971, **59**, 169.
- 10 G. Binsch, J. B. Lambert, B. W. Roberts and J. D. Roberts, J. Am. Chem. Soc., 1964, 86, 5564; J. M. Schulman and T. Venanzi, J. Am. Chem. Soc., 1976, 98, 6739.
- 11 N. F. Ramsey and E. M. Purcell, *Phys. Rev.*, 1952, **85**, 143; N. F. Ramsey, *Phys. Rev.*, 1953, **91**, 303.
- R. E. Wasylishen, *Can. J. Chem.*, 1976, **54**, 833; H. Martineau,
 M. Trierweiler and M. L. Martin, *Org. Magn. Reson.*, 1981, **17**, 182;
 T. Axenrod, C. M. Watnick, M. J. Wieder, S. Duangthai, G. A. Webb,
 H. J. C. Yeh, S. Bulusu and M. M. King, *Org. Magn. Reson.*, 1982, **20**, 11.
- 13 S. Berger and J. D. Roberts, J. Am. Chem. Soc., 1974, 96, 6757; R. L. Lichter, D. E. Dorman and R. Wasylishen, J. Am. Chem. Soc., 1974, 96, 930.
- 14 M. Kainosho and H. Nagao, Biochemistry, 1987, 26, 1068.

Received in Cambridge, UK, 10th February 1997; Com. 7/00931C