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Tandem oxa-Michael addition–SN2A substitution of 4-chlorobut-2-yn-1-ol with
nitroalkenes: a total allylic 1,3-strain-controlled diastereoselective synthesis of
3-vinylidenetetrahydrofurans

Jean-Pierre Dulcère* and Estelle Dumez

RéSo, Réactivité en Synthèse organique, Faculté des Sciences et Techniques, Centre de St. Jérôme, UMR 6516, av. Esc.
Normandie-Niemen, Boı̂te D 12, F-13397 Marseille Cedex 20, France

ButOK-promoted reaction of 4-chlorobut-2-yn-1-ol 1 with
nitroalkenes 2 affords 3-vinylidenetetrahydrofurans 3 in
good yields with total diastereoselectivity.

The tetrahydrofuran ring is present in a number of biologically
significant natural products1 and the synthesis of tetrahydrofu-
rans bearing unsaturated substituents is of great interest for
further transformations. Among these substituents, the allenyl
functionality has received very little attention. In a recent

report,2 we disclosed a radical-mediated carbocyclisation of
bromoalkynyloxiranes which gave vinylidenetetrahydrofurans.
Very recently,3 oxa-Michael initiated tandem conjugate reac-
tions of 1-nitrocyclohexene with 4-hydroxybut-2-ynoates were
shown to afford alkylidenetetrahydrofurans. Provided the oxa-
Michael addition is followed by an SN2A substitution, this
tandem reaction should constitute an alternative route to
vinylidenetetrahydrofurans.

We present here our preliminary results on the oxa-Michael–
SN2A substitution of 4-chlorobut-2-yn-1-ol 1 with nitroalkenes
2a–f. Nitroalkenes 2a–f† (Scheme 1) were reacted at 0 °C in
THF with 1, in the presence of ButOK. After 10 min the mixture
was warmed to room temperature, where it was maintained until
completion of the reaction (10–30 min). Vinylidenetetra-
hydrofurans 3a–f were isolated‡ as the sole products (70–78%
yield) after flash chromatography on silica gel.

According to the known reactivity of nitroalkenes with
oxygen nucleophiles,4 the oxa-Michael addition first affords
nitronate I which then undergoes SN2A substitution to provide
the allenyl moiety5 (Scheme 2). Bicyclic adducts 3a–c are cis
ring-fused.

Interestingly, acyclic (E)-nitro alkenes 2d–f§ afford, under
the same reaction conditions, vinylidenetetrahydrofurans 3d–f
in a totally diastereoselective way.¶ We assume that this is due
to allylic 1,3-strain, which allows only one conformation II for
the transition state and thereby leads to the trans stereoselec-
tivity observed in the intramolecular cyclisation into viny-
lidenetetrahydrofurans 3d–f (Scheme 3). Indeed, due to the
allylic 1,3-strain effect,4b,6 excellent diastereoselectivities have
been reported for the kinetically controlled protonation of
nitrones bearing substituents which differ in steric hindrance7

and for intermolecular nitrone cycloadditions when a stereo-
genic centre is present at C-2.8 However, allylic 1,3-strain does
not play a significant role in Michael additions to nitroalkenes
bearing a stereogenic centre at C-3, which proceed with
remarkable 1,2-asymmetric induction due to steric and ster-
eoelectronic control.9

In conclusion, the tandem oxa-Michael addition–intramole-
cular SN2A substitution of nitroalkenes constitutes an efficient
and stereocontrolled procedure for the preparation of synthet-
ically valuable and relatively unknown vinylidenetetrahydro-
furans.

Footnotes

* E-mail: Jean-pierre.dulcere@reso.u_3mrs.fr
† Prepared by literature procedures: 2a–c (ref. 10); 2d–f [refs. 11, 12(b)].
‡ Satisfactory analytical and spectral data were obtained for all compounds.
Selected data for 3b: nmax/cm21 2950, 2870, 1985, 1965, 1550, 1365, 1080,
1040; dH (400 MHz, CDCl3) 1.64–1.99 (m, 4 H), 2.12–2.40 (m, 4 H), 4.49
(dt, J 12, 4.2 Hz, (1 H), 4.58 (dt, J 12, 4.8 Hz, 1 H), 4.67 (dd, J 9, 6 Hz, 1
H), 5.18 and 5.22 (ddd, J 11.9, 4.8, 4.2 Hz, 2 H); dC (100.61 MHz, CDCl3)
201.6, 100.6, 97.5, 82.8, 81.2, 66.2, 30.7, 27.7, 22.1, 21.6; m/z 196 (M + 1),
149 (6%), 99 (12), 87 (30), 81 (100), 69 (24).
§ (E)-Stereochemistry for 2d–f was assigned by comparison of 1H NMR
spectra with previously reported data (ref. 12).

Scheme 1 Reagents and conditions: i, 2 (1 equiv.), THF, ButOK (1.5
equiv.), 1 (ClCH2C·CCH2OH, 1.5 equiv.), 0 °C, 10 min, then room temp.,
15–30 min, 70–78%

Scheme 2 Reagents and conditions: i, see Scheme 1

Scheme 3 Reagents and conditions: i, see Scheme 1
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¶ Selected data for 3e: dH (400 MHz, CDCl3) 0.87 (t, J 6.9 Hz, 3 H),
1.28–1.32 (m, 6 H), 1.44–1.50 (m, 2 H), 1.62 (s, 3 H), 4.43 (m, 1 H), 4.45
(dt, J 11.8, 3.7 Hz, 1 H), 4.55 (dt, J 11.8, 4.9 Hz, 1 H), 5.15 (dd, J 4.9, 3.7
Hz, 2 H); dC (100.61 MHz, CDCl3) 200.8, 104.6, 96.3, 86.1, 83.0, 67.3,
31.7, 29.7, 25.4, 22.5, 18.9, 14.0; by using a NOESY 2D correlation
experiment, NOE interactions detected between the Me at C-4 and the CH2

at C-5 allowed the assignment of trans stereochemistry to 3e.
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