Novel (silylimino)diarylphosphoranyl(trimethylsilyl)methyl-*C*,*N* ligands $[CH(SiMe_3)PPh_2=NSiMe_3]^-([LL']^-)$ and $[CH(SiMe_3){Ph(1,2-C_6H_4)P=NSiMe_2}]^-([LL'']^-)$ and the structures of $[Li(LL'')]_2$ and $[Pb(LL')_2]^{\dagger}$

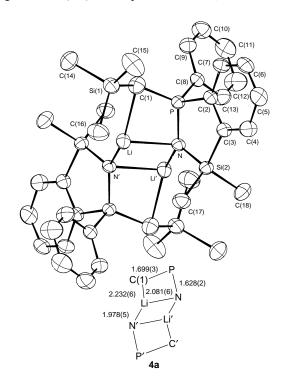
Peter B. Hitchcock, Michael F. Lappert* and Zhong-Xia Wang

The Chemistry Laboratory, University of Sussex, Brighton, UK BN1 9QJ

Metal complexes containing the ligands $[CH(SiMe_3)PPh_2=NSiMe_3]^- \{\equiv [LL']^-\}\ and [CH(SiMe_3)\{Ph(1,2-C_6H_4)P=NSiMe_2\}]^- \{\equiv [LL'']^-\}\ are reported [from, as initial precursor, CH₂(SiMe_3)PPh_2=NSiMe_3]: Li(LL'), K(LL'), [Li(LL'')]_2 4, Pb(LL')_2 5 and Pb(LL'')_2; mass and multinuclear NMR spectra and single-crystal X-ray diffraction data for 4 (a fused tricyclic complex having a central LiNLiN ring) and 5 are presented.$

We report the synthesis and characterisation of five lithium, potassium and lead(II) homoleptic derivatives of two novel C,N-centred (iminophosphoranyl)methyl ligands, including the X-ray structures of two of them.

Treatment of the phosphinimine $CH_2(SiMe_3)PPh_2=NSiMe_3$ 1¹ with LiBuⁿ yielded (Scheme 1, step i) colourless [Li{CH-(SiMe_3)PPh_2=NSiMe_3}]_2 {=[Li(LL')]_2} 2, which with KOBu^t in hexane afforded (Scheme 1, step ii) the insoluble, pale yellow K(LL') 3, which was soluble in thf or pyridine. Reacting 2 with LiBuⁿ gave (Scheme 1, step iii) the colourless *ortho*silylated product [Li(CH(SiMe_3){Ph(1,2-C_6H_4)P=NSiMe_2})]_2 {=[Li(LL")]_2} 4, which was also accessible (Scheme 1, step iv) from 1 and 1.2 equiv. of LiBuⁿ. The product obtained (Scheme 1, step v) from PbCl₂ and either 2 or 4 was the yellow Pb(LL')₂ **5** or the colourless $Pb(LL'')_2$ **6**. The yields shown in Scheme 1 refer to isolated, pure, crystalline (or for **3**, powder) **2–6**.

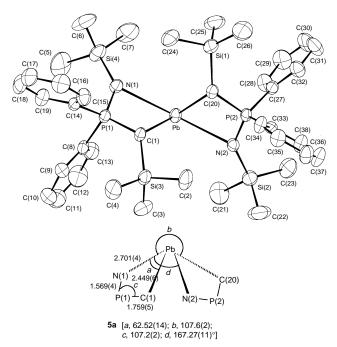

The conversion of **2** to **4** (Scheme 1, step iii) probably proceeded *via* an *ortho*-lithiated intermediate, followed by an intramolecular displacement of Me^- at silicon by the aromatic anion, as shown in **7**. In a separate experiment (Scheme 1, step iv) it was shown that the transformation **2** to **4** was effected catalytically using 0.2 mol excess of LiBuⁿ.

Each of the compounds 2–6 (except 3), were hydrocarbonsoluble, gave satisfactory microanalytical, as well as ¹H, ¹³C{¹H}, ³¹P{¹H}, ⁷Li{¹H} (2 and 4) and ²⁰⁷Pb{¹H} (5 and 6) NMR[‡] and EI mass spectra {which showed as the highest ion $[M - Li (or K) + 1]^+ (ca. 30\% \text{ for } 2 \text{ or } 3), [M - Li]^+ (58\% \text{ for}$ 4) and M⁺ (1% for 5 and 5% for 6)} (thf = OC₄H₈, M = the mononuclear molecular ion). Single-crystal X-ray diffraction data§ established the molecular structures of 4 (Fig. 1), 5 (Fig. 2) and 6; the structure of 6 will be presented in the full paper.

Noteworthy features of the NMR spectra[‡] include the demonstration of (*i*) long-range phosphorus–silylmethyl coupling in the ${}^{13}C{}^{1}H$ NMR spectrum of **2**, ${}^{3}J({}^{13}C{}^{-31}P)$ 3.5, 4.6

SiMe₃ SiMe₃ SiMea Ίi CH₂ ĊH SiMe₃ SiMe₃ SiMe₃ 1 (ref. 1) 2.85% 3.75% iii Pb[CH(SiMe₃)PPh₂=NSiMe₃]₂ 2 5, 50% Me Me_2 SiMe₂ -Me v $\frac{1}{2}$ $\frac{1}{2}$ Pb СĤ ĊĤ Ph СН SiMe₃ SiMe₃ SiMes 2 2 7 4,70% 6.50%

Scheme 1 Synthesis of (silylimino)diarylphosphoranyl(trimethylsilyl)methyl-*C*,*N*]metal complexes **2–6**. *Reagents and conditions*: i, LiBuⁿ, hexane, -20 °C to room temp., 3 h; ii, KOBu^t, hexane, room temp., 3 h; iii, LiBuⁿ, hexane, reflux, 4 h; iv, 1.2 equiv. LiBuⁿ, hexane, -20 °C to room temp., 5 d; v, 1/2 PbCl₂, Et₂O, -45 to *ca*. 20 °C.


Fig. 1 The molecular structure of crystalline complex **4**. Selected bond lengths (Å) (see also **4a**) and angles (°): N–Li–C(1) 80.1(2), N–Li–N' 103.8(2), N'–Li–C(1) 135.0(3), N–P–C(1) 113.18(14), P–N–Li 86.2(2), P–N–Li' 126.4(2), P–C(1)–Li 79.9(2), Li–N-Li' 76.2(2).

Chem. Commun., 1997 1113

Hz for the two SiMe₃ groups; (*ii*) separate (axial and equatorial) Si–Me ¹H signals due to the endocyclic SiMe₂ group in **4** and **6**; and (*iii*) ${}^{2}J({}^{31}P_{-}{}^{207}Pb)$ and ${}^{2}J({}^{207}Pb_{-}{}^{31}P)$ in **5** and **6**.

The structures of crystalline [Li{CH₂PMe₂=NSiMe₃}]₄8 and $[Li{CMe_2PPr_1^i}=NSiMe_3]_2$ 9 have the lithium atoms bridged by carbon.² It is surprising, therefore, that the dinuclear crystalline 4 (Fig. 1) has the imido nitrogen atoms bridging the lithium atoms, the skeletal structure being ladder-shaped, 4a. The central LiNLi'N' ring is planar, with the angle at N narrower [76.2(2)°] than that at Li, 103.8(2)°. The terminal LiNPC rings are puckered, Li lying 0.26 Å out of the NPC plane. The bond angles at the three-coordinate Li range from 80.1(2) [N-Li-C(1)] to $135.0(3)^{\circ}$ [N'-Li-C(1)], the sum of the angles at Li being ca. 319°. The six bond angles at N (av. 108°) vary from 76.2(2) to 129.6(2)° [Si(2)-N-Li]. The Li-N and Li-C bond lengths are unexceptional,3 while the Li-P contact of 2.556(5) Å is similar to the 2.56 (av.), 2.58 (av.) or 2.520(9) Å found in $[{Li(thf)_2}_2{PhPCH_2CH_2PPh}], { [{Li(tmen)}_2 C_{6}H_{4}(PPh)_{2}-1,2$],⁵ or Li(thf)₂[{N(SiMe_{3})}_{2}PPh_{2}],⁶ respectively [tmen = $(Me_2NCH_2)_2$]. The average Li–N and Li–C distances are 2.03 (8) and 1.928 (9), and 2.39 (8) and 2.27 (9), respectively.² The X-ray structure of [Li{2-C₆H₄PPh₂=NSi- Me_3 ₂Li(OEt)₂] is available.⁷

Crystalline **5** is mononuclear, Fig. 2. The four-coordinate lead has a stereochemically active lone pair of electrons. The phosphorus approximates to its having tetrahedral geometry. A simplified bonding pattern is shown in **5a**. The P–N bond length of 1.569(4) Å indicates a double bond, while the mean endocyclic P–C distance of 1.757(6) Å is slightly shorter than usual for a PV–C single bond. The average Pb–N distance of 2.678 Å is much longer than in anionic nitrogen-centred lead(II) compounds, *e.g.*, 2.24(2) Å in Pb[N(SiMe₃)₂]₂,⁸ or 2.465 Å (av.) in Pb[{N(SiMe₃)}₂PPh₂]₂,⁹ while the mean Pb–C(sp³) bond length of 2.448 Å in **5** may be compared with the Pb–C(sp²) distance of 2.336 Å in Pb[C₆H₂(CF₃)₃-2,4,6]₂.¹⁰

Fig. 2 The molecular structure of crystalline complex **5**. Selected bond lengths (Å) and angles (°) (see also **5a**): Pb–C(20) 2.447(5), Pb–N(2) 2.654(4), P(2)–C(20) 1.756(5), P(2)–N(2) 1.569(4); C(20)–Pb–C(1) 88.2(2), C(20)–Pb–N(2) 63.6(2), C(1)–Pb–N(2) 106.69(14), C(20)–Pb–N(1) 107.6(2), N(2)–Pb–N(1) 167.27(11), N(2)–P(2)–C(20) 108.1(2).

The new ligands $[LL']^-$ and $[LL'']^-$ should have an extensive coordination chemistry. Using Li(LL') **2** or Li(LL'') **4**, we have made *inter alia* Sn(LL')₂, Sn(LL'')₂, [Sn(LL')]₂, Pb(LL'')₂ and [Fe(LL')₃], as well as some analogues of Li, K, Sn^{II}, Fe^{II} and Co^{II}.

We thank the Chinese Government and the British Council for the award of a studentship to Z.-X. W. and the EPSRC for other support.

Footnotes

* E-mail: M.F.Lappert@sussex.ac.uk

† No reprints available.

‡ Selected NMR data [¹H 360.1, ⁷Li{¹H} 97.3, ³¹P{¹H} 101.3, ²⁰⁷Pb{¹H} 52.1 MHz; 298 K; C₅D₅N for **3**, C₆D₆ for **2** and **4–6**; *J*, Hz]. **2**: ¹H δ 0.10 (s, 9 H, SiMe₃), 0.13 (s, 9 H, SiMe₃), 0.17 (d, 1 H, CH, *J* 13.8), 7.19 (s, Ph), 7.21 (s, Ph), 7.84–7.89 (m, Ph); ⁷Li{¹H} δ 2.23; ³¹P{¹H} δ 33.32. **3**: ¹H δ 0.26 (s, 9 H, SiMe₃), 0.29 (s, 9 H, SiMe₃), 7.20–7.58 (m, Ph), 8.18–8.22 (m, Ph); ³¹P{¹H} δ 2.03. **4**: ¹H δ -0.02 (s, 9 H, SiMe₃), 0.32 (s, 3 H, SiMe), 0.59 (s, 3 H, SiMe), 0.92 (d, 1 H, CH, *J* 4.9), 7.03–7.15 (m, 5 H, Ph), 7.44–7.56 (m, 2 H, C₆H₄), 7.77–7.83 (m, 2 H, C₆H₄); ⁷Li{¹H} δ 2.05; ³¹P{¹H} δ 48.70. **5**: ¹H δ -0.01 (s, 18 H, SiMe₃), 0.20 (s, 18 H, SiMe₃), 1.37 (d, 2 H, CH, *J* 15.8), 7.00–7.05 (m, Ph), 7.15–7.22 (m, Ph), 7.64–7.69 (m, Ph), 7.79–7.85 (m, Ph); ³¹P{¹H} δ 19.52 (s, with satellite peaks, *J* 308); ²⁰⁷Pb{¹H} δ 2787.63 (t, *J* 306). **6**: ¹H δ 0.31 (s, 18 H, SiMe₃), 0.53 (s, 6 H, SiMe), 0.69 (s, 6 H, SiMe), 1.43 (d, 2 H, CH, *J* 9.5), 7.06–7.25 (m, Ph + C₆H₄); 7.54–7.65 (m, Ph + C₆H₄); ³¹P{¹H} δ 40.27 (s, with satellite peaks, *J* 311.8); ²⁰⁷Pb{¹H} δ 1998.26 (t, *J* 313.3).

§ *Crystal data*: **4**, C₃₆H₅₀Li₂N₂P₂Si₄: *M* = 699.0, triclinic, space group *P*Ī (no. 2), *a* = 9.904(1), *b* = 10.259(3), *c* = 11.175(1) Å, *α* = 109.10(2), *β* = 95.79(1), *γ* = 104.44(2)°, *U* = 1018.2(2) Å³, *F*(000) = 372; *Z* = 1, *D_c* = 1.14 g cm⁻³, specimen 0.3 × 0.3 × 0.3 mm, 3578 independent reflections, 2706 reflections with $[|F^2| > 2\sigma(F^2)]$; *R*₁ = 0.054, *wR*₂ = 0.152 (for all data). **5**, C₃₈H₅₈N₂P₂PbSi₄: *M* = 924.4, triclinic, space group *P*Ī (no. 2), *a* = 10.767(2), *b* = 14.091(2), *c* = 16.775(2) Å, *α* = 87.07(1), *β* = 72.01(1), *γ* = 69.77(1)°, *U* = 2266.9(6) Å³, *F*(000) = 936; *Z* = 2, *D_c* = 1.35 g cm⁻³, specimen 0.3 × 0.3 × 0.1 mm, 13179 independent reflections, 7752 reflections with $[|F^2| > 2\sigma(F^2)]$; *R*₁ = 0.056, *wR*₂ = 0.102 (for all data).

Intensities were measured to $\theta_{max} 25^{\circ}$ (for 4) or 30° (for 5) on an Enraf-Nonius CAD4 diffractometer using monochromated Mo-K α ($\mu = 0.25$ mm 4, 3.92 mm 5) radiation ($\lambda = 0.71073$ Å); absorption correction from ψ scan for 5. Structure refinements were by SHELXL-93, with H atoms in riding mode. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, Issue No. 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 182/455.

References

- 1 J. C. Wilburn and R. H. Neilson, Inorg. Chem., 1979, 18, 347.
- 2 A. Müller, B. Neumüller and K. Dehnicke, *Chem. Ber.*, 1996, **129**, 253.
- 3 cf. K. Gregory, P. v. R. Schleyer and R. Snaith, Adv. Inorg. Chem., 1991, 37, 47; W. N. Setzer and P. v. R. Schleyer, Adv. Organomet. Chem., 1985, 24, 353.
- 4 D. M. Anderson, P. B. Hitchcock, M. F. Lappert and I. Moss, *Inorg. Chim. Acta*, 1988, **141**, 157.
- 5 D.M. Anderson, P. B. Hitchcock, M. F. Lappert, W.-P. Leung and J. A. Zora, J. Organomet. Chem., 1987, 333, C13.
- 6 A. Steiner and D. Stalke, Inorg. Chem., 1993, 32, 1977.
- 7 A. Steiner and D. Stalke, Angew. Chem., Int. Ed. Engl., 1995, 34, 1752.
- 8 T. Fjeldberg, H. Hope, M. F. Lappert, P. P. Power and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1983, 639.
- 9 U. Kilimann, M. Noltemeyer and F. T. Edelmann, J. Organomet. Chem., 1993, 443, 35.
- 10 S. Brooker, J.-K. Buijink and F. T. Edelmann, Organometallics, 1991, 10, 25.

Received in Basel, Switzerland, 27th January 1997; Com. 7/00609H