## Iron(III)-induced tandem Nazarov cyclization–rearrangement of $\alpha$ -(trimethylsilylmethyl)divinyl ketone. Synthesis of the bicyclo[4.3.0]nonane ring system *via* spiro[4.4]nonane

## Chiaki Kuroda,\* Hiroshi Sumiya, Atsushi Murase and Akira Koito

Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171, Japan

6-Methylbicyclo[4.3.0]non-8-en-7-one was synthesized by FeCl<sub>3</sub>-induced tandem Nazarov cyclization–rearrangement of 4-cyclopentylidene-5-trimethylsilylpent-1-en-3-one, *via* 7-methyl-1-methylenespiro[4.4]nonan-2-one as intermediate.

Construction of various carbocyclic ring systems is fundamental chemistry in the synthesis of terpenoids and related compounds.<sup>1</sup> Allylsilanes have been developed as useful intermediates for this purpose.<sup>2</sup> We are studying the synthesis of carbocycles<sup>3</sup> and lactones,<sup>4</sup> basic structures of terpenoids,<sup>5</sup> utilizing intramolecular cyclization of  $\beta$ -(ethoxycarbonyl)allylsilane. Recently we reported that Nazarov cyclization of  $\alpha$ -(trimethylsilylmethyl)divinyl ketone derivatives **1**, derived from  $\beta$ -(ethoxycarbonyl)allylsilane attached to a six-membered ring, gives spiro[4.5]decanes **2** (Scheme 1).<sup>6,7</sup> Here we report that the  $\alpha$ -(trimethylsilylmethyl)divinyl ketone attached to a five-membered ring undergoes tandem Nazarov cyclization– skeletal rearrangement to yield the bicyclo[4.3.0]nonane ring.<sup>8</sup>



Synthesis of the cyclization precursors,  $\alpha$ -(trimethylsilylmethyl)divinyl ketone **3**, was executed from cyclopentanone in five steps according to Scheme 2.<sup>6</sup> Similarly, **4** and **5** were



Scheme 2 Reagents and conditions: i, (EtO)<sub>2</sub>POCH(CO<sub>2</sub>Et)CH<sub>2</sub>SiMe<sub>3</sub>, NaH, DME, room temp.; ii, LiAlH<sub>4</sub>, Et<sub>2</sub>O, 0 °C; iii, MnO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>, room temp.; iv, CH<sub>2</sub>=CHMgBr, THF, 0 °C

prepared from 3-methylcyclopentanone and were separated by column chromatography.

The Nazarov cyclization of **3** was carried out by treatment with FeCl<sub>3</sub> (2.5 equiv.) in CH<sub>2</sub>Cl<sub>2</sub> at 0 °C† for 4 h, giving spiro[4.4]nonane **6**‡ in 56% yield. However, when **3** was subjected to the same treatment at room temperature§ for 24 h, compound **7**°¶ was obtained as the sole product in 62% yield. Treatment of **6** under the same reaction conditions (room temp., 24 h)§ gave **7** in 60% yield. From this result, along with the observation of behaviour on TLC, it was suggested that **7** was formed from **3** via **6** as intermediate (Scheme 3).

A further study of the stereochemistry of this Nazarov cyclization and subsequent skeletal rearrangement was made using methyl derivatives 4 and 5 as substrates. First, 4 and 5 were treated with FeCl<sub>3</sub> at 0 °C,† giving two isomers of spiro[4.4]nonanes¶ 8 and 9 as inseparable mixtures. The ratios of the two isomers were 8:9 = 4:1 from 4, and 1:1 from 5. The tandem Nazarov cyclization-rearrangement reaction was next examined and the results are summarized in Table 1. The rearranged product 10 consisted of five isomers 10a-e as inseparable mixtures. Although the exact structures of each isomer could not be determined, the major isomer 10a was shown to have the illustrated structure by <sup>1</sup>H NMR spectroscopy. It was confirmed here again that the bicyclo-[4.3.0]nonene is formed via spiro[4.4]nonane. Thus both direct treatment of 4 (entry 1) and treatment of spiro compounds obtained from 4 (entry 3) afforded 10 in similar ratios. Compound 5 showed parallel results (entries 2 and 4). Different ratios of the isomers were obtained when the reaction



Scheme 3 Reagents and conditions: i, FeCl<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, -30 to 0 °C, 4 h; ii, FeCl<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, -30 °C to room temp., 24 h



Chem. Commun., 1997 1177

| Entry | Substrate         | Temp.                   | <i>t</i> /h | Yield<br>(%) | Ratio of isomers <sup>b</sup><br>10a : 10b : 10c : 10d : 10e |
|-------|-------------------|-------------------------|-------------|--------------|--------------------------------------------------------------|
| 1     | 4                 | room temp. <sup>e</sup> | 25          | 64           | 72:12:5:3:8                                                  |
| 2     | 5                 | room temp. <sup>e</sup> | 26          | 65           | 46:32:10:6:6                                                 |
| 3     | $8 + 9 (4:1)^{c}$ | room temp. <sup>e</sup> | 49          | 67           | 69:13:5:4:9                                                  |
| 4     | $8 + 9 (1:1)^d$   | room temp. <sup>e</sup> | 53          | 63           | 42:25:10:11:12                                               |
| 5     | 5                 | room temp.f             | 25          | 67           | 13:13:9:26:39                                                |

<sup>*a*</sup> The reactions were carried out in CH<sub>2</sub>Cl<sub>2</sub> with FeCl<sub>3</sub> (2.5 equiv.). <sup>*b*</sup> **10a**:  $\delta$  5.90 (dd, J 2.5, 6 Hz) and 6.70 (dd, J 2, 6 Hz); **10b**:  $\delta$  5.88 (dd, J 2.5, 6 Hz) and 6.65 (dd, J 2, 6 Hz); **10c**:  $\delta$  5.84 (dd, J 1.5, 6 Hz) and 6.85 (dd, J 3, 6 Hz); **10d**:  $\delta$  5.81 (br d, J 5.5 Hz) and 6.96 (br d, J 5.5 Hz); **10e**:  $\delta$  5.80 (br d, J 5.5 Hz) and 6.95 (br d, J 5.5 Hz) (in C<sub>6</sub>D<sub>6</sub>). <sup>*c*</sup> Obtained from **4**; see text. <sup>*d*</sup> Obtained from **5**; see text. <sup>*e*</sup> The reagents were added at -30 °C and then the mixture was slowly warmed to room temp. over period of 7 h, which is included in the reaction time. <sup>*f*</sup> The reagents were added at -30 °C and the cooling bath was immediately removed.



Scheme 4

temperature was raised immediately after addition of the reagent (entry 5).

In contrast, this type of skeletal rearrangement did not proceed when analogous spiro[4.5]decanes  $2 (R = H, Me, and But)^6$  were subjected to the same treatment. Accordingly, the rearrangement is considered to be limited to the strained spiro five-five membered ring system.

The stereochemistry of the Nazarov cyclization of 4 and 5 can be explained by steric interaction between the methyl group and the vinyl group, but not the trimethylsilylmethyl group (Scheme 4). Thus intermediate i derived from 4 is favoured over ii, in which the methyl group and the vinyl group are on the same side of the cyclopentane ring, while the distance between these two groups gives non-stereoselectivity for 5.

Although the reaction mechanism of the rearrangement (*e.g.* **6** to **7**) is not clear, it can be deduced that **10a** is produced from **8** with *ca.* 90% selectivity. Similarly, **10b** must be the major product from **9**.

In conclusion, a new entry to bicyclo[4.3.0]nonane carbon framework was established *via* a tandem Nazarov cyclization– skeletal rearrangement of  $\alpha$ -(trimethylsilylmethyl)divinyl ketone. Synthesis of the bicyclo[4.3.0]nonane ring system from a compound having a five-membered ring is one of the classical methods.<sup>1</sup> However, this new entry from cyclopentanone is different, since (i) the newly-formed ring is still five-membered, and (ii) the original five-membered ring becomes a sixmembered ring.<sup>10</sup> We have previously reported a synthesis of the bicyclo[4.3.0]nonane ring system using  $\beta$ -(ethoxycarbonyl)allylsilane.<sup>3</sup> Thus the same carbon framework can be synthesized from  $\beta$ -(ethoxycarbonyl)allylsilane by two independent strategies.

We thank Dr M. M. Ito and Dr T. Niitsu, Soka University, for the measurements of mass spectra.

## Footnotes

 $\dagger$  The reagents were added at  $-30~^{\circ}\mathrm{C}$  and the reaction mixture was slowly warmed to 0  $^{\circ}\mathrm{C}.$ 

 $\ddagger$  Compound 6: UV (pentane) 223 nm; IR (neat) 1730, 1645 cm<sup>-1</sup>; <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>)  $\delta$  1.31 (2 H, t, *J* 8 Hz), 2.04 (2 H, t, *J* 8 Hz), 4.84 (1 H, d, *J* 1 Hz), 6.08 (1 H, d, *J* 1 Hz); *m*/z 150 (M<sup>+</sup>).

§ See footnote (*e*) of Table 1.

¶ The stereochemistry was determined from NOE measurements.

## References

- T.-L. Ho, *Carbocycle Construction in Terpene Synthesis*, VCH, New York, 1988; C. D. J. Boden and G. Pattenden, *Contemp. Org. Synth.*, 1994, 1, 433.
- For review, see G. Majetich, in Organic Synthesis: Theory and Application, ed. T. Hudlicky, JAI Press, Greenwich, 1989, vol. 1, p. 173;
  D. Shinzer, Synthesis, 1988, 263; Y. Yamamoto and N. Asao, Chem. Rev., 1993, 93, 2207.
- 3 C. Kuroda, Y. Ohnishi and J. Y. Satoh, *Tetrahedron Lett.*, 1993, 34, 2613; C. Kuroda, H. Nogami, Y. Ohnishi, Y. Kimura and J. Y. Satoh, *Tetrahedron*, 1997, 53, 839.
- 4 For examples, see C. Kuroda, S. Shimizu and J. Y. Satoh, J. Chem. Soc., Perkin Trans. 1, 1990, 519; C. Kuroda, S. Inoue, R. Takemura and J. Y. Satoh, J. Chem. Soc., Perkin Trans. 1, 1994, 521; C. Kuroda and K. Ito, Bull. Chem. Soc. Jpn., 1996, 69, 2297; C. Kuroda, N. Mitsumata and C. Y. Tang, Bull. Chem. Soc. Jpn., 1996, 69, 1409.
- 5 B. M. Fraga, *Nat. Prod. Rep.*, 1996, **13**, 307; 1995, **12**, 303; 1994, **11**, 533.
- 6 C. Kuroda and Y. Hirono, Tetrahedron Lett., 1994, 35, 6895.
- 7 For related Nazarov cyclization of allylsilane derivatives, see S. E. Denmark, in *Comprehensive Organic Synthesis*, ed. B. M. Trost, Pergamon, Oxford, 1991, vol. 5, p. 751; S. E. Denmark and R. C. Klix, *Tetrahedron*, 1988, 44, 4043; S. E. Denmark, M. A. Wallace and C. B. Walker, Jr., *J. Org. Chem.*, 1990, 55, 5543; K.-T. Kang, S. S. Kim, J. C. Lee and J. S. U, *Tetrahedron Lett.*, 1992, 33, 3495.
- 8 For example of recent synthesis of bicyclo[4.3.0]nonane, see M. Tori, M. Ikawa, T. Sagawa, H. Furuta, M. Sono and Y. Asakawa, *Tetrahedron*, 1996, **52**, 9999.
- 9 M. Karpf and A. S. Dreiding, Helv. Chim. Acta, 1979, 62, 852.
- 10 For related type of ring formation, see W. L. Mock and M. E. Hartman, J. Org. Chem., 1977, 42, 459.

Received in Cambridge, UK, 4th February 1997; Com. 7/00816C