New rhodacyclopentane with phenylvinylidene substituents, mer- $\left[\mathbf{R h}\left\{\mathrm{CH}_{2} \mathbf{C}(=\mathbf{C H P h}) \mathbf{C}(=\mathbf{C H P h}) \mathbf{C H}_{2}\right\} \mathbf{C l}\left(\mathbf{P M e}_{3}\right)_{3}\right]$. Structure and formation through concerted cycloaddition of phenylallene molecules to $\left[\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}\right]$

Kohtaro Osakada,* Jun-Chul Choi, Susumu Sarai, Take-aki Koizumi and Takakazu Yamamoto*
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan

$\left[\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}\right]$ reacts with an excess of phenylallene to give a new rhodacyclopentane, mer- $\left[\mathrm{Rh}\left\{\mathrm{CH}_{2} \mathrm{C}(=\mathrm{CHPh})\right.\right.$ $\left.\left.\overline{\mathrm{C}(=\mathrm{CHPh}) \mathrm{C}} \mathrm{H}_{2}\right\} \mathrm{Cl}\left(\mathrm{PMe}_{3}\right)_{3}\right]$ 1, which is not obtained via the reaction of $\left[\mathrm{RhCl}\left(\boldsymbol{\eta}^{2}-\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CHPh}\right)\left(\mathrm{PMe}_{3}\right)_{3}\right] 2$ with phenylallene.

Several complexes of $\mathrm{Ti}, \mathrm{Ta}, \mathrm{Co}$, Ir and Ni have been reported to undergo addition of two alkene molecules to give the corresponding saturated metallacyclopentanes. ${ }^{1}$ Similar formation of metallacycles from the $2: 1$ reaction of allene and transition-metal complexes is much less common, ${ }^{2}$ while the reaction is involved as a crucial step in cyclooligomerization of allene or substituted allene promoted by metal complexes. ${ }^{3}$ Chlororhodium(I) complexes catalyze polymerization ${ }^{4}$ or cyclooligomerization ${ }^{5}$ of 1,2-dienes depending on the ligands bonded to the Rh center. Formation of a rhodacyclopentane from allene would be intriguing in relation to the the mechanism of the above cyclooligomerization of the 1,2-dienes catalyzed by Rh complexes. Here, we report the addition of phenylallene to $\left[\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}\right]$, to give a novel rhodacyclopentane which is structurally characterized.
[$\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}$] reacts with 3 equiv. of phenylallene to give $m e r-\left[\mathrm{Rh}\left\{\mathrm{CH}_{2} \mathrm{C}(=\mathrm{CHPh}) \mathrm{C}(=\mathrm{CHPh}) \mathrm{C}_{2}\right\} \mathrm{Cl}\left(\mathrm{PMe}_{3}\right)_{3}\right] \quad \mathbf{1}$ as shown in eqn. (1). \dagger

The reaction mixture does not contain any other rhodacyclopentanes that would be formed through addition of phenylallene in a different orientation of the double bonds. Fig. 1 shows the molecular structure of $\mathbf{1}$ which has an octahedral coordination around the Rh center with three PMe_{3} ligands at meridional coordination sites. \ddagger Three $\mathrm{C}-\mathrm{C}$ bond distances in the five-membered chelate ring are quite similar, while the $\mathrm{Rh}-\mathrm{C}(1)$ bond $[2.16(1) \AA]$ is longer than the $\mathrm{Rh}-\mathrm{C}(10)$ bond $[2.061(1) \AA]$ owing to a larger trans influence of PMe_{3} relative to Cl . The C-C bond distances $[1.49$ (2) \AA A are significantly longer than the corresponding bond of the platinacyclopentane prepared from dimerization of cycloheptatetraene in the presence of a platinum(0) complex. ${ }^{2 b}$ Both of the two $\mathrm{C}=\mathrm{C}$ double bonds in $\mathbf{1}$ have Z structure owing to less steric congestion around the s-cis diene moiety than the other possible geometry of the double bonds.

The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum gives rise to signals due to the CH_{2} carbons at $\delta 22.26$ and 13.21. The former peak, with a large $J(\mathrm{CP})$ value $(77 \mathrm{~Hz})$, is assigned to the carbon bonded trans to PMe_{3} and the latter to carbon trans to Cl . Two ${ }^{1} \mathrm{H}$ NMR signals due to the CH_{2} hydrogens are observed at $\delta 3.02$ and 2.11, which are assigned to the CH_{2} group trans to PMe_{3} and trans to Cl , respectively, based on the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectrum. The other ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals as well as the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
spectrum are in accord with the structure obtained by X-ray crystallography.

Reaction of a reduced amount of phenylallene with $\left[\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}\right]$ has been examined in order to obtain an insight for the pathway of reaction (1). Reaction in a 1.2:1 ratio in hexane results in the formation of $\left[\mathrm{RhCl}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CHPh}\right)\left(\mathrm{PMe}_{3}\right)_{3}\right] 2$ which is isolated as the hexane insoluble product.§

Fig. 2 shows the molecular structure of $\mathbf{2}$ which shows a trigonal-bipyramidal coordination around the Rh centre with $\mathrm{P}(1)$ and $\mathrm{P}(3)$ at the apical positions. \ddagger Elongation of the π-coordinated $\mathrm{C}=\mathrm{C}$ double bond $\left[\mathrm{CH}_{2}=\mathrm{C} 1.406(9), \mathrm{C}=\mathrm{CHPh}\right.$

Fig. 1 ORTEP drawing of $\mathbf{1}$ at 30% probability level. Selected bond distances ((\AA) and angles $\left(^{\circ}\right): \mathrm{Rh}-\mathrm{Cl} 2.503(3), \mathrm{Rh}-\mathrm{P}(1)$ 2.331(5), Rh-P(2) $2.326(4), \mathrm{Rh}-\mathrm{P}(3) 2.368(3), \mathrm{Rh}-\mathrm{C}(1) 2.16(1)$, $\mathrm{Rh}-\mathrm{C}(10) 2.06(1)$, $\mathrm{C}(1)-\mathrm{C}(2) 1.49(2), \mathrm{C}(2)-\mathrm{C}(3) 1.38(2), \mathrm{C}(2)-\mathrm{C}(11) 1.49(2), \mathrm{C}(10)-\mathrm{C}(11)$ $1.49(2), \mathrm{C}(11)-\mathrm{C}(12) 1.35(2)$; Cl-Rh-P(1) 86.9(1), Cl-Rh-P(2) 85.5(1), Cl-Rh-P(3) 95.8(1), Cl-Rh-C(1) 94.3(4), Cl-Rh-C(10) 176.3(3), $\mathrm{P}(1)-\mathrm{Rh}-\mathrm{P}(2)$ 168.9(1), $\mathrm{P}(2)-\mathrm{Rh}-\mathrm{P}(3) 94.6(2), \mathrm{P}(1)-\mathrm{Rh}-\mathrm{P}(3)$ 94.1(2), $\mathrm{P}(1)-\mathrm{Rh}-\mathrm{C}(1) 88.4(4), \mathrm{P}(1)-\mathrm{Rh}-\mathrm{C}(10)$ 92.7(4), $\mathrm{P}(2)-\mathrm{Rh}-\mathrm{C}(1)$ 84.1(4), $\mathrm{P}(2)-\mathrm{Rh}-\mathrm{C}(10) 94.3(4), \mathrm{P}(3)-\mathrm{Rh}-\mathrm{C}(1) 169.6(4), \mathrm{P}(3)-\mathrm{Rh}-\mathrm{C}(10) 87.8(3)$, $\mathrm{C}(1)-\mathrm{Rh}-\mathrm{C}(10)$ 82.0(5), $\mathrm{Rh}-\mathrm{C}(1)-\mathrm{C}(2) 107.6(9), \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) 125(1)$, $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11) \quad 111(1), \mathrm{C}(11)-\mathrm{C}(2)-\mathrm{C}(3) \quad 122(1), \mathrm{Rh}-\mathrm{C}(10)-\mathrm{C}(11)$ $112.6(8), \quad \mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12) \quad 128(1), \quad \mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(10) \quad 112(1)$, $\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(12) 119(1)$.

Fig. 2 ORTEP drawing of 2 at 50% probability level. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Rh}-\mathrm{Cl} 2.540(2), \mathrm{Rh}-\mathrm{P}(1) 2.320(2), \mathrm{Rh}-\mathrm{P}(2)$ 2.323(2), Rh-P(3) 2.325(2), Rh-C(1) 2.126(7), Rh-C(2) 1.988(6), $\mathrm{C}(1)-\mathrm{C}(2) 1.406(9), \mathrm{C}(2)-\mathrm{C}(3) 1.353(9)$; $\mathrm{Cl}-\mathrm{Rh}-\mathrm{P}(1) 84.79(7)$, $\mathrm{Cl}-\mathrm{Rh}-$ P(2) 97.80(7), Cl-Rh-P(3) 83.36(7), Cl-Rh-C(1) 118.3(2), Cl-Rh-C(2) 158.0(2), C(1)-Rh-C(2) 39.8(3), P(1)-Rh-P(2) 96.74(7), P(2)-Rh-P(3) 96.94(7), $\mathrm{P}(1)-\mathrm{Rh}-\mathrm{P}(3) 162.98(7), \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) 142.1(7)$.

Scheme 1
$1.353(9) \AA$] as well as a bend of the cumulated double bonds $\left[\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) 142.1(7)^{\circ}\right]$ indicate the presence of significant back-donation from the Rh center to the phenylallene ligand. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 above $25{ }^{\circ} \mathrm{C}$ shows partial liberation of a PMe_{3} ligand to afford a square-planar rhodium(I) complex $\left[\mathrm{Rh}\left(\eta^{2}-\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CHPh}\right) \mathrm{Cl}\left(\mathrm{PMe}_{3}\right)_{2}\right] \mathbf{3}$ which is isolated from the mixture and characterized by X-ray crystallography.II
Reaction of $\mathbf{2}$ and phenylallene in a $1: 2$ molar ratio in toluene for 8 h at $20^{\circ} \mathrm{C}$ does not give $\mathbf{1}$ but causes quantitative recovery of $\mathbf{2}$ as shown in Scheme 1.

The results are in contrast with previous reports indicating that several transition-metal complexes containing π-coordinated alkenes react further with alkenes to give the corresponding metallacyclopentane. ${ }^{1 d . f, g}$ The present study has disclosed that the π-coordinated phenylallene complex $\mathbf{2}$, with an 18 electron Rh center, is not a precursor of the metallacycle $\mathbf{1}$ in reaction (1) and that formation of $\mathbf{1}$ proceeds through direct cycloaddition of two phenylallene molecules to $\left[\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}\right]$.
This work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

Footnotes

* E-mail: kosakada@res.titech.ac.jp
\dagger To a toluene $(8 \mathrm{ml})$ solution of $\left[\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}\right](158 \mathrm{mg}, 0.43 \mathrm{mmol})$ was added phenylallene ($150 \mathrm{mg}, 1.3 \mathrm{mmol}$) at room temp. The initial pale yellow solution gradually turned pale brown accompanied by deposition of an off-white solid which was collected by filtration after the reaction for 8 h , and dried in vacuo to give 1 ($203 \mathrm{mg}, 79 \%$).
\ddagger Crystal data: for $1: \mathrm{C}_{27} \mathrm{H}_{43} \mathrm{ClP}_{3} \mathrm{Rh}, M_{\mathrm{r}}=598.92$, orthorhombic, space group Pbca (no. 61), $a=35.023(6), b=13.823(3), c=12.155(2) \AA$, $U=5884 \AA^{3}, Z=8, D_{\mathrm{c}}=1.353 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=8.37 \mathrm{~cm}^{-1}$ (graphite-monochromated radiation, $\lambda=0.71069 \AA$), $F(000)=2496$. The data collection was made on a Rigaku AFC5R diffractometer at ambient temperature (293 K) using ω scan mode for Lorentz and polarization effects. An empirical absorption correction (ψ scan) was applied. Of the unique 5877 reflections with $2 \theta \leqslant 55^{\circ}, 1959$ reflections with $I>3 \sigma(I)$ were used in the refinement. A total of 289 parameters (non-hydrogen atoms modelled anisotropically) were refined with $w=\left[\sigma\left(F_{\mathrm{o}}\right)\right]^{-2}$. Hydrogen atoms were placed in idealised geometries and included in the structure calculation without refinement of the parameters. The structure converged to $R=0.054$ and $R_{\mathrm{w}}=0.044$. For 2: $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{ClP}_{3} \mathrm{Rh}, M_{\mathrm{r}}=482.75$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (no. 19), $a=12.926(2), b=15.979(2), c=11.307(3) \AA$, $U=2336 \AA^{3}, Z=4, D_{\mathrm{c}}=1.373 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=10.36 \mathrm{~cm}^{-1}$ (graphite-monochromated radiation, $\lambda=0.71069 \AA$), $F(000)=1000$. The data collection and absorption correction were carried out similarly to $\mathbf{1}$. Of the unique 2528 reflections with $2 \theta \leqslant 55^{\circ}, 2066$ reflections with $I>3 \sigma(I)$ were used in the refinement. A total of 208 parameters were refined with $w=\left[\sigma\left(F_{\mathrm{o}}\right]^{-2}\right.$ and the structure converged to $R=0.038$ and $R_{\mathrm{w}}=0.029$. Treatment of hydrogen atoms is similar to 1. CCDC 182/513.
\S To a hexane $(8 \mathrm{ml})$ dispersion of $\left[\mathrm{RhCl}\left(\mathrm{PMe}_{3}\right)_{3}\right](115 \mathrm{mg}, 0.31 \mathrm{mmol})$ was added phenylallene ($44 \mathrm{mg}, 0.38 \mathrm{mmol}$) at room temp. Stirring the mixture for 26 h led to separation of a yellow solid which was collected by filtration and dried in vacuo. Recrystallization from thf-hexane afforded $\mathbf{2}$ as yellow crystals ($85 \mathrm{mg}, 57 \%$).
II Dissociation of PMe_{3} from 2 is not thermodynamically favoured. The equilibrium constant for $\mathbf{2}=\mathbf{3}+\mathrm{PMe}_{3}$ is $5.1 \times 10^{-4} 1 \mathrm{~mol}^{-1}$ even at $60^{\circ} \mathrm{C}$ and is probably much smaller near $25^{\circ} \mathrm{C}$ although precise measurement of the equilibrium constant was not feasible. Crystallographic results of $\mathbf{3}$ which show a square-planar coordination around the Rh center will be reported separately.

References

1 (a) A. R. Fraser, P. H. Bird, S. A. Bezman, J. R. Shapley, R. White and J. A. Osborn, J. Am. Chem. Soc., 1973, 95, 597; (b) J. X. McDermott, M. E. Wilson and G. M. Whitesides, J. Am. Chem. Soc., 1976, 98, 6529; (c) R. H. Grubbs and A. Miyashita, J. Organomet. Chem., 1978, 161, 371; (d) S. J. McLain, C. D. Wood and R. R. Schrock, J. Am. Chem. Soc., 1979, 101, 4558; (e) S. A. Cohen, P. R. Auburn and J. E. Bercaw, J. Am. Chem. Soc., 1983, 105, 1136; (f) P. Binger, T. R. Martin, R. Benn, A. Rufinska and G. Schroth, Z. Naturforsch. Teil B, 1984, 39, 993; (g) K. Mashima and H. Takaya, Organometallics, 1985, 4, 1464.
2 (a) G. K. Barker, M. Green, J. A. K. Howard, J. L. Spencer and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1978, 1839; (b) W. R. Winchester, M. Gawron, G. J. Palenik and W. M. Jones, Organometallics, 1985, 4, 1894.
3 D. J. Pasto, N.-Z. Huang and C. W. Eigenbrot, J. Am. Chem. Soc., 1985, 107, 3160.
4 S. Otsuka and A. Nakamura, J. Polym. Sci., Part B: Polym. Lett. Ed., 1967, 5, 973 ; J. P. Scholten and H. J. van der Ploeg, J. Polym. Sci., Polym. Chem. Ed., 1972, 10, 3067; J. P. Scholten and H. J. van der Ploeg, J. Polym. Sci., Polym. Chem. Ed., 1973, 11, 3205; J. Leland, J. Boucher and K. Anderson, J. Polym. Sci., Polym. Chem. Ed., 1977, 15, 2785.
5 F. N. Jones and R. V. Lindsey, J. Org. Chem., 1968, 33, 3838; S. Otsuka, A. Nakamura and H. Minamida, Chem. Commun., 1969, 191; J. P. Scholten and H. J. van der Ploeg, Tetrahedron Lett., 1972, 1685.

Received in Cambridge, UK, 17th March 1997; Com. 7/01859B

