Hydrozirconation of an η^2 -ligated phosphaalkyne. A new synthetic route to η^2 -ligated phosphaalkenes

Maria Helena A. Benvenutti, Nathalie Cenac and John F. Nixon*

School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, Sussex, UK, BN1 9QJ

The phosphaalkyne complex [Pt(dppe)(η^2 -Bu^tC=P)] undergoes ready hydrozirconation with [ZrHCl(η^5 -C₅H₅)₂] to give the metallaphosphaalkene complex [Pt(dppe){ η^2 -Bu^tCH=PZrCl(η^5 -C₅H₅)₂] which is a useful precursor for the synthesis of η^2 -phosphaalkene complexes.

The recent report of the formation of a phosphaalkenyl ruthenium(II) complex by hydroruthenation of the phosphaalkyne Bu^tC \equiv P^{1,2} prompts us to describe the first examples of the facile conversion of the η^2 -ligated Bu^tC \equiv P by a synthetic route which offers considerable potential for the synthesis of a range of η^2 -ligated Bu^tCH=PX derivatives.

Thus treatment of $[Pt(dppe)(\eta^2-Bu^tC\equiv P)]$ 1³ with the Schwartz reagent, $[ZrHCl(\eta^5-C_5H_5)_2]$, quantitatively affords the η^2 -ligated metallaphosphaalkene complex $[Pt(dppe)\{\eta^2-Bu^tCH=PZrCl(\eta^5-C_5H_5)_2\}]$ 2 which occurs as a single isomer.[†]

$$\begin{array}{c} \mathsf{PZrCl}(\eta^{5}\text{-}\mathsf{C}_{5}\mathsf{H}_{5})_{2}\\ (\mathsf{dppe})\mathsf{Pt}\text{---} \\ \mathsf{HBu}^{t}\\ \mathbf{2} \end{array}$$

It is interesting to note that the $[ZrCl(\eta^5-C_5H_5)_2]$ fragment adds solely to the phosphorus atom which is at the positive end of the dipole in uncoordinated Bu^tC=P. Hydrozirconation of phosphaalkenes R₂C=PR' has been the subject of a very recent review,³ where it was pointed out that the course of these reactions depends strongly on the nature of the substituents attached to phosphorus or carbon.

Treatment of **2** with H₂O at -60 °C in thf for 1 h readily affords the yellow η^2 -phosphaalkene complex [Pt(dppe)(η^2 -Bu^tCH=PH)] as a 3:1 mixture of *cis*- and *trans*-isomers **3a** and **3b**.‡ The uncoordinated phosphaalkene is unknown.

The synthetic potential of the intermediate **2** in the generation of other phosphaalkene complexes is illustrated by its reaction with Ph₂PCl leading to ready elimination of $[ZrCl_2(\eta^5-C_5H_5)_2]$ and formation of the diphenylphosphino-phosphaalkene complex $[Pt(dppe)(\eta^2-Bu'CH=PPPh_2)]$ **4** as a mixture of *cis*- and *trans*-isomers.§

The field of metallaphosphaalkene complexes has recently been reviewed by Weber⁴ but the synthesis of 2 represents a

new approach; furthermore as discussed elsewhere,⁵ the reactivity of 2 towards halogeno-compounds offers considerable synthetic potential to generate other metallaphosphaalkene complexes by treatment with appropriate metal halides.

We thank both the EPSRC and the EEC/CNPq for their financial support of other aspects of phosphaalkyne chemistry research at Sussex.

Footnotes

* E-mail: j.nixon@sussex.ac.uk

† NMR data for 2: ³¹P {¹H} (121.4 MHz, C₆D₆); δ 47.7 (dd, CH₂PPh₂, ²J_{PP} 53.9, ²J_{PP} 35.5, ¹J_{PPt} 3233.6 Hz), 52.7 (dd, PCBut, ²J_{PP} 35.5, ²J_{PP} 15.3, ¹J_{PPt} 282.2 Hz). ¹³C{¹H} (75.4 MHz, C₆D₆); δ 30.5 (dd, CH₂, J_{CP} 33.0, J_{CP} 15.9, ²J_{CPt} 16.0 Hz), 33.2 (dd, CH₂, J_{CP} 32.4, J_{CP} 14.7, ²J_{CPt} 19.0 Hz), 33.8 (dd, CH₃, J_{CP} 6.1, J_{CP} 5.7, ³J_{CPt} 32.9 Hz), 74.1 (ddd, CH, J_{CP} 83.6, J_{CP} 50.0, ²J_{CP} 3.7, J_{CPt} 341.3 Hz), 109.6–109.7 (m, C₅H₅), 126.5 (s, Ph), 126.9 (dd, Ph, J_{CP} 8.4, J_{CP} 0.8 Hz), 127.3 (d, Ph, J_{CP} 6.0 Hz), 127.6 (d, Ph, J_{CP} 9.9 Hz), 128.1 (dd, Ph, J_{CP} 42.5, J_{CP} 1.1, J_{CPt} 54.7 Hz), 129.3 (dd, Ph, J_{CP} 38.8, J_{CP} 10.0 Hz), 130.9 (d, Ph, J_{CP} 11.0, J_{CPt} 11.2 Hz), 131.4 (d, Ph, J_{CP} 12.6, J_{CPt} 19.0 Hz), 133.1 (d, Ph, J_{CP} 12.6, J_{CPt} 21.8 Hz), 134.4 (dd, Ph, J_{CP} 13.7, J_{CP} 2.4, $J_{\rm CPt}$ 24.2 Hz); quaternary carbons unidentified. ¹H (300 MHz, C₆D₆); δ 1.28 (s, 9 H, CH₃), 2.00 (m, 4 H, CH₂), 4.19 (ddd, 1 H, CH, J_{HP} 7.5, J_{HP} 7.5, J_{HP} 3.8, ²J_{HPt} 55.6 Hz), 5.80–6.01 (m, 10 H, C₅H₅), 6.80–8.21 (m, 20 H, Ph). 3226.1 Hz), 56.9 (dd, PPh₂, J_{PP} 45.8, J_{PP} 11.0, J_{PPt} 2929.7 Hz). ¹³C{¹H} (thf); δ 27.5 (dd, CH₂, J_{CP} 32.6, J_{CP} 14.1, ${}^{2}J_{CPt}$ 13.9 Hz), 31.5 (dd, CH₂, J_{CP} 33.6, J_{CP} 18.1, ²J_{CPt} 20.5 Hz), 33.8 (dd, CH₃, J_{CP} 8.5, J_{CP} 5.8, ³J_{CPt} 30.7 Hz), 69.6 (ddd, CH, J_{CP} 65.9, J_{CP} 52.0, J_{CP} 4.2 Hz), 126.5–134.3 (m, Ph); quaternary carbons unidentified. ¹H (C₆D₆); δ 1.41 (s, 9 H, CH₃), 2.00 (m, 4 H, CH₂), 2.70 (ddd, PH, ¹J_{HP} 150, ³J_{HP} 12.5, ³J_{HH} 9.6, ²J_{HPt} 51.8 Hz), 4.38 (ddd, 1 H, CH, ${}^{2}J_{\rm HP}$ 18.8, ${}^{3}J_{\rm HH}$ 9.6, ${}^{3}J_{\rm HP}$ 3.0, ${}^{3}J_{\rm HP}$ 3.1, ${}^{2}J_{\rm HP}$ 58.0 Hz), 6.99–8.15 (m, 2 Ph). **3b** ${}^{3}P{}^{1}H$ for the minor product: δ –167.0 (dd, PH, $^{3}J_{PP}$ 49.9, J_{PP} 6.2, J_{PPt} 325.6, J_{PH} 145.8 Hz), 50.3 (dd, PPh₂, J_{PP} 49.9, J_{PP} 48.0, J_{PPt} 3237.7 Hz), 56.9 (dd, PPh₂, J_{PP} 48.0, J_{PP} 6.2, J_{PPt} 2929.7 Hz). § *NMR data for* **4**: ^{3}P [¹H] (CD₂Cl₂) δ – 80.0 (ddd, PCH, $^{1}J_{PP}$ 213.2, $^{2}J_{PP}$ 54.0, ²*J*_{PP} 9.6, ¹*J*_{PPt} 297.9 Hz), -12.7 (ddd, PPh₂, ¹*J*_{PP} 213.2, ³*J*_{PP} 9.4, ³*J*_{PP} 5.8, ²J_{PPt} 38.0 Hz), 51.5 (ddd, CH₂PPh₂, ²J_{PP} 54.0, ²J_{PP} 39.8, ³J_{PP} 5.8, ¹J_{PPt} 3198.0 Hz), 53.9 (ddd, CH₂PPh₂, ²J_{PP} 39.8, ²J_{PP} 9.6, ³J_{PP} 5.4, ¹J_{PPt} 2951.5 Hz).

References

- 1 R. B. Bedford, A. F. Hill and C. Jones, Angew. Chem., Int. Ed. Engl., 1996, 35, 547.
- 2 R. B. Bedford, A. F. Hill, C. Jones, A. J. P. White, D. J. Williams and J. D. E. T. Wilton-Ely, *Chem. Commun.*, 1997, 179.
- 3 J.-P. Majoral, M. Zablocka, A. Igau and N. Cenac, *Chem. Ber.*, 1996, **129**, 879.
- 4 L. Weber, Angew. Chem., Int. Ed. Engl., 1996, 35, 271.
- 5 M. H. A. Benvenutti, N. Cenac, S. D'Arbeloff and J. F. Nixon, paper in preparation.

Received in Cambridge, UK, 9th May 1997; Com. 7/03201C