Ruthenium catalysed formation of 2-alkoxy-5-methylenetetrahydropyrans

Sylvie Dérien, Beatriz Gomez Vicente and Pierre H. Dixneuf*

UMR 6509 *CNRS-Université de Rennes 1, Laboratoire de Chimie de Coordination et Catalyse, Campus de Beaulieu, 35042 Rennes, France*

The regioselective carbon–carbon coupling of prop-2-yn-1-ols with allyl alcohol is achieved in the presence of the ruthenium(II) catalyst RuCl(cod)(C_5Me_5) and leads to either 2-hydroxy- or 2-allyloxy-5-methylenetetrahydropyrans.

The tetrahydropyran skeleton is a key structure in intermediates for the synthesis of natural products such as terpenoids, pheromones, antibiotics and other biologically active compounds.¹ The 2-alkoxy-5-methylenetetrahydropyrans have been used to give access to 3-hydroxypyran-4-ones, flavouring components,² aggregation pheromones,³ members of the tricothecanes⁴ and to precursors of cytotoxic and antitumour active vernolepin.⁵ The 2-alkoxytetrahydropyrans are usually conveniently constructed from sugars.^{3,4}

We now report a novel, general method leading to new 2-hydroxy- or 2-alkoxy-5-methylenetetrahydropyrans. It is based on a regioselective ruthenium catalysed C–C coupling of prop-2-yn-1-ols with allyl alcohol, with atom economy, according to eqn. (1).

The carbon–carbon bond coupling of C=C and C=C bonds on a ruthenium(II) centre has already been reported to preferentially lead to linear derivatives⁶ and we have shown by contrast that the reaction of terminal alkynes with allyl alcohol in the presence of ruthenium(IV) and ruthenium(II) catalyst precursors led to γ , δ -unsaturated aldehydes⁷ with a branched/linear ratio up to 4:1.

The reaction of the prop-2-yn-1-ol **1a** (2.5 mmol) with 3 equiv. of allyl alcohol, in the presence of 5 mol% of RuCl(cod)(C_5Me_5) catalyst⁸ (cod = cycloocta-1,5-diene) affords a mixture of **2a** and **3a** below 90 °C. However, when a large excess of allyl alcohol is used (5 ml) the same reaction, performed above 45 °C, leads to the selective formation of the mixed acetal **3a** (Scheme 1). The latter was obtained after 1 h at 80 °C in 80% yield; by contrast, when the reaction was performed at 25 °C (30 min), only the hemiacetal **2a** (80%) was obtained.

These results show that the hemiacetal **2a** is first selectively produced and that further heating in an excess of allyl alcohol selectively leads to the 2-allyloxy acetal **3a**. The reaction corresponds, after displacement of the cod ligand, to the *regioselective* oxidative coupling of the alkyne C=C and allyl alcohol C=C bonds on the ruthenium centre, leading to **A**, followed by β -elimination involving the exocyclic methylene group, giving the intermediate **B** (Scheme 2). The latter, on reductive elimination, should form a branched γ , δ -unsaturated aldehyde which cyclises into the six-membered hemiacetal **2**. It is noteworthy that the presence of a hydroxy group at the α -position of a terminal C=CH bond allows the regioselective coupling leading only to the branched isomer, a regioselectivity phenomenon not observed before.^{6,7} A ruthenium allenylidene intermediate (Ru=C=C=CR₂) usually produced by metal activation of prop-2-yn-1-ols (HC=CR₂OH) followed by water elimination⁹ can be ruled out. Indeed the reaction of MeC=C-CH₂OH with allyl alcohol according to the conditions shown in Table 1 also affords the cyclic hemiacetal of type **2** with an exocyclic ethylidene group.

Scheme 1

The conditions in Table 1, applied to a variety of prop-2-yn-1-ols with an excess of allyl alcohol, can be used to produce selectively either the corresponding 2-hydroxy- 2 or 2-allyloxytetrahydropyrans 3, respectively. Prop-2-ynyl alcohol 1b leads to a low yield of 2b (42%) but 1c affords selectively 2c (70%) or 3c (55%). When unsymmetrically substituted derivatives 1d-f ($\mathbb{R}^1 \neq \mathbb{R}^2$) were used, diastereoisomers were formed in good yields (51–78%) in the ratio 60:40 for both 2d-f and 3d-f

Chem. Commun., 1997 1405

Alkynol	\mathbb{R}^1	R ²	Reaction at room temp.		Reaction at 80 °C	
			t/h	Product (% yield) ^b	t/h	Product (% yield) ^b
1a	-[CH ₂] ₅ -		0.5	2a (80)	1	3a (80)
1b	Н	Н	1	2b (42)	7	2b (28) 3b (15)
1c	Me	Me	2	2c (70)	1	3c (55)
1d	Me	Et	2	2d $(64)^c$	4	3d $(61)^c$
1e	Me	CH ₂ CHMe ₂	2	$2e(78)^{c}$	5	3e $(51)^c$
1f	Me	[CH ₂] ₂ CH=CMe ₂	2	2f $(68)^c$	3	$3f(72)^{c}$
1g	Me	Ph	3	2g (73)	5	2g (60) 3g (11)

^{*a*} Reaction conditions: 1 (2.5 mmol) in allyl alcohol (5 ml) was treated with [RuCl(cod)(C_5Me_5)] (0.125 mmol, 5 mol%) under the conditions shown. ^{*b*} Isolated yields after silica gel chromatography. All compounds were fully characterised by spectroscopic methods. ^{*c*} Diastereomeric ratio of 60:40 determined by ¹H NMR.

derivatives. This ratio corresponds to the anomer ratio usually obtained from sugar derivatives. However, from the phenyl derivative **1g** only one diastereoisomer **2g** was obtained either at 25 °C (3 h) in 73% yield or at 80 °C (5 h) in 60% yield. In that case the presence of the aryl group slowed down the formation of the allyloxy acetal, and the derivative **3g** could only be observed in 11% yield at 80 °C for 5 h. NOE experiments showed the relative *trans* arrangement of the phenyl group and the OH group of **2g**.

This one-pot ruthenium catalysed regioselective C–C coupling reaction followed by cyclisation takes place with atom economy,¹⁰ and offers a new route to functional tetrahydropyran derivatives. On the basis of the known reactions involving 2-alkoxytetrahydropyrans obtained from sugars,¹ this selective catalytic formation of 2-alkoxy-5-methylenetetrahydropyrans has potential for organic synthesis.

Footnote

* E-mail: pierre.dixneuf@univ-rennes1.fr

References

- M. H. D. Postema, Tetrahedron, 1992, 48, 8545.
- 2 K. Sato, S. Inoue, T. Tanami and M. Ohasi, *J. Chem. Soc., Perkin Trans. 1*, 1981, 1015.
- 3 D. E. Plaumann, B. J. Fitzsimmons, B. M. Ritchie and B. Fraser-Reid, J. Org. Chem., 1982, 47, 941.
- 4 D. B. Tulshian and B. Fraser-Reid, Tetrahedron, 1984, 40, 2083.
- 5 F. Kido, T. Abiko and M. Kato, J. Chem. Soc., Perkin Trans. 1, 1995, 2989.
- 6 B. M. Trost, A. F. Indolese, T. J. J. Müller and B. Treptow, J. Am. Chem. Soc., 1995, **117**, 615; B. M. Trost, J. A. Martinez, R. J. Kulawiec and A. F. Indolese, J. Am. Chem. Soc., 1993, **115**, 10402.
- 7 S. Dérien, D. Jan and P. H. Dixneuf, Tetrahedron, 1996, 52, 5511.
- 8 P. J. Fagan, W. S. Mahoney, J. C. Calabrese and I. D. Williams, Organometallics, 1990, 9, 1849.
- 9 D. Touchard, N. Pirio and P. H. Dixneuf, *Organometallics*, 1995, 14, 4920 and references cited therein.
- 10 B. M. Trost, Angew. Chem., Int. Ed. Engl., 1995, 34, 259.

Received in Cambridge, UK, 24th May 1997; 7/02799K