A new direct homolytic iodination reaction of alkanes by perfluoroalkyl iodides

Lucia Liguori, Hans-René Bjørsvik, Anna Bravo, Francesca Fontana and Francesco Minisci*

Dipartimento di Chimica del Politecnico, via Mancinelli 7, I-20131 Milano, Italy

A new method for the direct free-radical chain iodination of alkanes by perfluoroalkyl iodides is described.

The direct free-radical iodination of alkanes by iodine, unlike the other halogens, is not feasible owing to its large positive enthalpy of hydrogen abstraction [eqn. (1)]. The rates of

$$R-H + I^{\bullet} \longrightarrow R^{\bullet} + H-I \qquad \Delta H \sim 20-33 \text{ kcal mol}^{-1}$$
 (1)

$$R-H + R_{f}^{\bullet} \longrightarrow R^{\bullet} + R_{f}-H$$
 (2)

$$R_{f}^{\bullet} + \bigcup_{O} H \longrightarrow \left[\begin{array}{c} \delta^{-} \\ R_{f}^{\bullet-} H \\ \bullet^{-} \\ \delta^{+} O \end{array} \right]^{\ddagger} \longrightarrow \begin{array}{c} R_{f}^{\bullet-} H \\ + \\ H \end{array}$$
(3)

$$R_{f}^{\bullet} + H - R \longrightarrow R_{f} - H + R^{\bullet}$$
(6)

$$R^{\bullet} + I - R_{f} \longrightarrow R_{f}^{\bullet} + R - I \qquad (7)$$

$$Bu^{t}OOH + Fe^{III} \longrightarrow Bu^{t}O^{\bullet} + OH^{-} + Fe^{IV}$$
(8)

 $Bu^{t}O^{\bullet} \longrightarrow CH_{3}^{\bullet} + MeC(O)Me$ (9)

$$C_4F_9$$
—I + CH_3^{\bullet} \longrightarrow $C_4F_9^{\bullet}$ + CH_3 —I (10)

$$Bu^{t}OOH + Fe^{III} \longrightarrow Bu^{t}OO^{\bullet} + H^{+} + Fe^{II}$$
(11)

hydrogen abstraction from C–H bonds [eqn. (2)] by perfluoroalkyl radicals ($R_{f'}$) are > 10³ times larger than those of the analogous hydrocarbon radicals.¹ Enthalpic (the higher energy of R_{f} –H compared to R–H bonds) and polar (the electrophilic character of $R_{f'}$) effects influence the rates of hydrogen abstraction. Thus, the rate of hydrogen abstraction by C_7F_{15} . from THF, whose α -position is particularly activated by both enthalpic and polar [eqn. (3)] factors, has been evaluated ¹ at 6.1 $\times 10^5 \text{ M}^{-1} \text{ s}^{-1}$. On the other hand, alkyl radicals easily abstract iodine atom from R_f–I, as shown by the effective free-radical addition of R_f–I to alkenes² [eqns. (4) and (5)], with the polar effect playing a significant role.

Thus, the conditions of alkane iodination according to the radical chain of eqns. (6) and (7) appeared to be fulfilled.

Iodocyclohexane was obtained in 70% yield, based on C_4F_9I , by refluxing a solution of cyclohexane and C_4F_9I in acetic acid in the presence of catalytic amounts of Bu'OOH and Fe(OAc)₃. The reaction is explained by the radical chain of eqns. (6) and (7), initiated by a redox system [eqns. (8)–(10)] and represents a new simple, direct iodination of alkanes; we believe³ eqn. (8) to be operating in this case, rather than eqn. (11).

In order to probe the reactivity–selectivity relationship of the reaction, an investigation was carried out with heptane, adamantane and 1-chlorohexane; heptane gave a mixture of all the iodoheptane isomers (Table 1, including a comparison with chlorination by *N*-chloroamines).

Enthalpic and steric effects contribute to the regioselectivity: the CH₂ groups in positions 3 and 4 have substantially the same reactivity, while the CH₂ in position 2 is more reactive due to steric factors and the methyl group is less reactive for enthalpic reasons. The behaviour is qualitatively similar to that for chlorination by protonated *N*-chloroamines⁴ (Minisci chlorination),⁵ in which the selectivity is determined by hydrogen abstraction by R_2NH^+ .

The free-radical reactivity of adamantane is interesting because the selectivity of hydrogen abstraction is little affected by enthalpic factors, but it is greatly influenced by polar effects⁶ (high selectivity with $R_2NH^{+.6}$ and $ArC(O)OO^{.7}$ radicals and in electron-transfer processes⁸). The yields obtained according to eqns. (6) and (7) (84.7% 1-iodo- and 15.3% 2-iodo-ada-

Table 1 Iodination of heptane

	Iodination per hydrogen $(\%)^a$					
lodinating agent	1-iodo	2-iodo	3-iodo	4-iodo		
C ₄ F ₉ I Me ₂ NHCl+ Bu ⁱ ₂ NCl	1 (4.1) 1 1	18.7 (51.0) 75.8 75.3	11.1 (30.3) 39.5 26.4	10.7 (14.6) 39.0 26.1		

^a Figures in brackets indicate the yield of each isomer.

Table 2 Iodination of 1-chlorohexa	ne
------------------------------------	----

Te diversione	Iodination per hydrogen (%) ^a					
agent	1-iodo	2-iodo	3-iodo	4-iodo	5-iodo	6-iodo
C ₄ F ₉ I Me ₂ NHCl ⁺	0.2 (2.1)	0.3 (3.5)	1 (12.0) 1	2.2 (26.7) 2.9	4.2 (50.0) 10.5	0.3 (5.7) 0.2
Cl ₂	0.09	0.4	1	1.1	1.2	0.5

^a Figures in brackets indicate the yield of each isomer.

mantane) confirm the expected influence of the polar effect, due to the electrophilic character of C_4F_9 , the higher stability of 1-adamantyl⁺ with respect to its (secondary) 2-isomer⁹ and the oxidation potential of adamantane ($E_{ox} = 2.72$ V vs. SCE), which is lower than that of 2,3-dimethylbutane ($E_{ox} = 3.45$ V vs. SCE).⁸

The iodination of 1-chlorohexane, reported in Table 2 and compared with chlorination by Me_2NHCl^+ and Cl_2 , further supports our ideas about the influence of enthalpic and polar effects in hydrogen abstraction by C_4F_9 .

The σ -inductive and field effects of the chlorine atom in 1-chlorohexane are significant in the iodination, but they are lower than in chlorination by Me₂NHCl⁺. This result suggests that the increase in hydrogen abstraction rates for R_f compared to the analogous hydrocarbon radicals must be mainly ascribed to the enthalpic effect (higher energy of the R_f-H bonds), the polar effect being a significant but minor factor.

We have recently¹⁰ reached the same conclusion concerning the increase in addition rates of $R_{\rm f'}$ to aromatic substrates, compared to addition of alkyl radicals, which is due mainly to the enthalpic effect, with a significant but minor polar contribution.

Footnote and References

* E-mail: fontana@dept.chem.polimi.it

- 1 W. R. Dolbier, Jr., Chem. Rev., 1996, 96, 1557.
- 2 M. Yoshida, N. Kamigata, H. Sawada and M. Nakayama, J. Fluorine Chem., 1990, 49, 1.
- 3 F. Minisci, E. Vismara and F. Fontana, J. Org. Chem., 1989, 54, 5224; F. Minisci, F. Fontana, S. Araneo, F. Recupero, S. Banfi and S. Quici, J. Am. Chem. Soc., 1995, 117, 226; F. Minisci, F. Fontana, S. Araneo, F. Recupero and L. Zhao, Synlett, 1996, 119.
- 4 R. Bernardi, R. Galli and F. Minisci, J. Chem. Soc. B, 1968, 324.
- 5 N. C. Deno, Methods in Free Radical Chemistry, ed. E. S. Huyser,
- Marcel Dekker, New York, 1975, p. 143. 6 F. Minisci, F. Fontana, L. Zhao, S. Banfi and S. Quici, *Tetrahedron*
- Lett., 1994, 35, 8033.
 7 A. Bravo, H. R. Bjørsvik, F. Fontana, F. Minisci and A. Serri, J. Org. Chem., 1996, 61, 940.
- 8 F. Mella, M. Freccero, T. Soldi, E. Fasani and A. Albini, J. Org. Chem., 1996, 61, 1413.
- 9 G. A. Olah, G. Liang and G. D. Mateesen, J. Org. Chem., 1974, 39, 3750.
- 10 A. Bravo, H. R. Bjørsvik, F. Fontana, L. Liguori and F. Minisci, J. Org. Chem., in the press.

Received in Liverpool, UK, 14th May 1997; 7/03332J