5-*endo***-Trigonal cyclization of** *o***-substituted** *gem***-difluorostyrenes: syntheses of 2-fluorinated indoles, benzo[***b***]furans and benzo[***b***]thiophenes**

Junji Ichikawa,*† Yukinori Wada, Tatsuo Okauchi and Toru Minami*

Department of Applied Chemistry, Kyushu Institute of Technology, Sensui-cho, Tobata, Kitakyushu 804, Japan

b**,**b**-Difluorostyrenes bearing tosylamido, hydroxy or methylsulfinyl groups at the** *o***-position undergo intramolecular substitution of the nitrogen, oxygen or sulfur with loss of fluorine** *via* **a 5-***endo***-trigonal process leading to 2-fluorinated heterocyclic systems in high yields.**

gem-Difluoroalkenes possess remarkable reactivity toward nucleophilic substitution for their fluorine atoms *via* addition– elimination processes.1 This reactivity is due to (i) the electrophilic activation of the carbon–carbon double bond by the two fluorines and (ii) the leaving-group ability of the fluoride ion. This chemical reactivity renders these alkenes valuable as synthetic building blocks² as well as mechanismbased enzyme inhibitors.3 We have recently reported the reactions of 2,2-difluorovinyl ketones with external nucleophiles leading to facile syntheses of α, β -unsaturated ketones,⁴ α -oxo ketene derivatives⁵ and 3- or 5-fluoropyrazoles.⁶ Our interest in the further application of *gem*-difluoroalkene chemistry led us to explore an intramolecular version of such vinylic fluorine substitution reactions. Here we report the construction of ring-fluorinated heterocyclic systems starting from o -substituted β , β -difluorostyrenes.⁷

b,b-Difluorostyrenes **1** bearing nucleophilic *ortho* nitrogen, oxygen or sulfur heteroatoms were designed as substrates for the intramolecular substitution. We sought to effect the 5-*endo*trigonal ring closure of **1** to afford 5-membered 2-fluoro heterocycles despite this cyclization being disfavoured in Baldwin's rules.8 Among 5-*endo*-trigonal cyclizations, such nucleophile-driven ring closures have only rarely been observed in synthetic chemistry,⁹ in contrast with electrophile-driven¹⁰⁺ and radical-initiated ring closures.11 We expected that the unique properties of *gem*-difluoroalkenes could make a nucleophilic approach feasible. Specifically, we thought that (i) the highly polarized difluorovinylidene alkenic bond displays significant single bond character (¹³C NMR: *ca*. δ 150 and 90 for $CF_2=C$) and would allow initial ring formation, and (ii) the successive elimination of fluoride ion could suppress the reverse ring opening. Such a process would provide an efficient access to 2-fluorinated indoles, benzo[*b*]furans, and benzo[*b*] thiophenes, of which synthetic methods are quite limited in spite of the potential uses of 2-fluoro heterocycles as components of agrochemicals, pharmaceuticals and dyestuffs.12 On the basis of these considerations, we investigated the cyclization of **1**.

The starting materials were easily prepared as outlined in Scheme 1 by using the one-pot sequence which we have previously developed for the preparation of *gem*-difluorostyrenes.13 The coupling reactions of 2,2-difluorovinylboranes **2a** and **2b** (generated *in situ* from 2,2,2-trifluoroethyl toluene*p*-sulfonate) with *N*-butylmagnesio-*o*-iodoaniline were effected in the presence of CuI with palladium catalysis to prepare o -amino- β , β -difluorostyrenes **3a** and **3c** as precursors of 2-fluoroindoles. *o*-Hydroxy-β,β-difluorostyrene **4b**, a precursor of 2-fluorobenzo[*b*]furan, was similarly obtained by the coupling of **2a** with *o*-iodoanisole, followed by demethylation with $BBr₃$.

The attempted cyclization of **3a** by treatment with 1.2 equiv. of BunLi failed, while treatment of toluene-*p*-sulfonamide **3b** with 1.2 equiv. of NaH in DMF successfully promoted the

Scheme 1 *Reagents and conditions*: i, BuⁿLi (2.1 equiv.), THF, -78 °C, 0.5 h; ii, BR₃ (1.1 equiv.), THF, $-78 \degree C$, 1 h then room temp., 3 h; iii, ArI (0.9) equiv.), CuI (1.0 equiv.), Pd₂(dba)₃·CHCl₃ (0.02 equiv.), PPh₃ (0.08 equiv.), THF–HMPA $(4:1)$, room temp. 1 h; iv, TsCl (1.1 equiv.), pyridine, 0° C to room temp., 11 h; v, BBr₃ (1.1 equiv.), CH_2Cl_2 , -15 °C to room temp., 2 h

'disfavoured' 5-*endo*-trigonal cyclization to afford 2-fluoroindole **5a** in 84% yield (Scheme 2).14§ Successful ring closure did not necessitate the use of high-dilution conditions, and proceeded smoothly even in the case of the starting styrene **3d** which bore a secondary alkyl group at the α -position. Moreover, when the hydroxystyrene **4b** was treated under similar conditions, 5-*endo*-trigonal cyclization of the corresponding alkoxide occurred leading to 2-fluorobenzo[*b*]furan **6** in 80% yield (Scheme 2).15¶

As a further example of the cyclization we next tried the intramolecular substitution utilizing a sulfur nucleophile. For the purposes of generating a thiolate moiety, the methlysulfinyl group was selected as an *ortho* substituent of β , β -difluorostyrene. The Pummerer rearrangement of o -methylsulfinyl- β , β difluorostyrene **7** followed by solvolysis would allow the cyclization *via* the unisolated intermediate, hemiacetal trifluoroacetate **8**. 16 Thus, **7** was readily derived from **3a** *via* diazotization as depicted in Scheme 3. Successive treatment of **7** with (i) trifluoroacetic anhydride and Et_3N and (ii) K_2CO_3 in MeOH provided 2-fluorobenzo[*b*]thiophene **9** in 82% yield as expected (Scheme 4).^{17||}

Scheme 2 *Reagents and conditions*: i, NaH (1.2 equiv.), DMF, 80 °C, 7 h; ii, NaH (1.2 equiv.), DMF, 0 to 60 °C, 2 h

*Chem. Commun***., 1997 1537**

Scheme 3 Reagents and conditions: i, CF₃CO₂H (2 equiv.), Me₂CHCH₂-CH2ONO (2 equiv.), MeCN, 0 °C, 0.5 h; ii, aq. NaSMe (3 equiv.), MeCN, 0° C to room temp., 1.5 h; iii, aq. TiCl₃ (2 equiv.), aq. H₂O₂ (3 equiv.), MeOH–H2O, room temp., 2 h

Scheme 4 *Reagents and conditions*: i, $(CF_3CO)_2O$ (3 equiv.), Et₃N (3 equiv.), CH₂Cl₂, 0 °C, 0.5 h; ii, K₂CO₃ (6 equiv.), MeOH, 0 °C to reflux, 2 h

In conclusion, nucleophilic addition–elimination reactions with the β , β -difluorovinylidene moiety allows normally 'disfavoured' 5-*endo*-trigonal cyclizations to occur. This cyclization process affords ring-fluorinated indoles, benzo[*b*]furans, and benzo[*b*]thiophenes in high yields. These 'anti-Baldwin' results indicate that some of the unique reactivity of *gem*difluoroalkenes may be derived from a partial single bond character of the alkene.

We gratefully acknowledge financial support for this research in the form of a grant from the Ministry of Education, Science, Sports, and Culture, Japan (Grant-in-Aid for Scientific Research No. 09640641), and Central Glass Co. Ltd. to J. I. We also thank the Center for Instrumental Analysis KIT for the measurement of analytical data.

Footnotes and References

† E-mail: ichikawa@che.kyutech.ac.jp

‡ Electrophile-driven cyclizations refer to ring closure initiated by the coordination of the double bond in a substrate to an external electrophile such as I₂ and PhSeCl. Strictly speaking, this type of cyclization does not seem likely to be an exception to Baldwin's rules.

§ **5a**: 1H NMR (500 MHz, CDCl3): d 0.86 (3H, t, *J* 7.4 Hz), 1.21 (2H, tq, *J* 7.4, 7.4 Hz), 1.53 (2H, tt, *J* 7.4, 7.4 Hz), 2.34 (3H, s), 2.52 (2H, td, *J* 7.4 Hz, *J*HF 0.8 Hz), 7.20 (2H, d, *J* 8.4 Hz), 7.23 (1H, ddd, *J* 7.7, 7.7, 1.2 Hz), 7.28 (1H, ddd, *J* 7.7, 7.7, 1.4 Hz), 7.33 (1H, dd, *J* 7.7, 1.2 Hz), 7.73 (2H, d, *J* 8.4 Hz), 8.08 (1H, d, *J* 7.7 Hz). ¹³C NMR (126 MHz, CDCl₃): δ 13.6, 21.3 (d, J_{CF} 3 Hz), 21.5, 22.1, 30.5, 99.7 (d, J_{CF} 11 Hz), 114.4, 118.9 (d, J_{CF} 7 Hz), 124.0, 124.0 (d, *J*_{CF} 4 Hz), 126.8, 128.1 (d, *J*_{CF} 6 Hz), 129.8, 130.6, 134.7, 145.2, 147.4 (d, *J*_{CF} 276 Hz). ¹⁹F NMR (470 MHz, CDCl₃-C₆F₆): δ 29.1 (1F, s). $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 2960, 2930, 2860, 1660, 1455, 1395, 1190, 1180, 745, 690, 665. *m/z* (20 eV) 345 (M+, 100%), 190 (68), 148 (92). HRMS: calc. for C₁₉H₂₀O₂SNF, 345.1199 (M⁺). Found, 345.1188.

 \int *Selected data* for 6: ¹H NMR (500 MHz, CDCl₃): δ 0.94 (3H, t, *J* 7.4 Hz), 1.39 (2H, tq, *J* 7.4, 7.4 Hz), 1.66 (2H, tt, *J* 7.4, 7.4 Hz), 2.57 (2H, td, *J* 7.4 $\frac{13}{2}$ C NMR (126 MHz, CDCl₃): δ 13.8, 21.0 (d, *J_{CF}* 3 Hz), 22.4, 30.7 (d, *J_{CF}* 2 Hz), 90.6 (d, *J*_{CF} 12 Hz), 110.8, 119.2 (d, *J*_{CF} 6 Hz), 123.1 (d, *J*_{CF} 4 Hz), 123.2, 129.3 (d, *J*_{CF} 3 Hz), 147.1, 157.1 (d, *J*_{CF} 278 Hz). ¹⁹F NMR (470 MHz, CDCl₃–C₆F₆): δ 42.0 (1F, s). V_{max} (neat)/cm⁻¹ 2960, 2940, 2860, 1675, 1455, 1380, 1295, 1260, 1185, 1140, 740. *m/z*(20 eV) 192 (M+, 43%), 149 (100). HRMS: calc. for C12H13OF, 192.0950 (M+). Found, 192.0918. ∑ This formation of benzothiophenes is favoured by Baldwin's rules since second-row elements are permitted 5-*endo*-trigonal processes [ref. 8(*b*)]. *Selected data* for **9**: 1H NMR (500 MHz, CDCl3): d 0.94 (3H, t, *J* 7.5 Hz), 1.39 (2H, tq, *J* 7.5, 7.5 Hz), 1.64 (2H, tt, *J* 7.5, 7.5 Hz), 2.75 (2H, td, *J* 7.5 Hz, *J*HF 1.3 Hz), 7.28 (1H, ddd, *J* 7.6, 7.6, 1.4 Hz), 7.35 (1H, ddd, *J* 7.6, 7.6, 0.9 Hz), 7.58 (1H, d, *J* 7.9 Hz), 7.64 (1H, d, *J* 7.9 Hz). 13C NMR (126 MHz, CDCl₃): δ 13.8, 22.5, 23.6, 31.0 (d, *J*_{CF} 2 Hz), 115.5 (d, *J*_{CF} 10 Hz), 121.5 (d, J_{CF} 6 Hz), 122.6, 124.0 (d, J_{CF} 4 Hz), 124.6, 131.3 (d, J_{CF} 2 Hz), 136.8 (d, J_{CF} 6 Hz), 159.2 (d, J_{CF} 289 Hz). ¹⁹F NMR (470 MHz, CDCl₃–C₆F₆): δ 29.1 (1F, s). $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 2960, 2930, 2860, 1610, 1460, 1435, 1265, 1190, 1065, 755, 730. *m/z* (20 eV) 208 (M+, 50%), 165 (100). HRMS: calc. for C12H13SF, 208.0722 (M+). Found 208.0694.

- 1 L. G. Sprague, K. B. Baucom, S. F. Sellers and R. A. DuBoisson, in *Chemistry of Organic Fluorine Compounds II*, ed. M. Hudlicky and A. E. Pavlath, ACS Monograph 187, American Chemical Society, Washington, DC, 1995, pp. 729-756.
- 2 M. J. Tozer and T. F. Herpin, *Tetrahedron* 1996, **52**, 8619.
- 3 J. R. McCarthy, P. S. Sunkara, D. P. Matthews, A. J. Bitonti, E. T. Jarvi, J. F. Sabol, R. J. Resvick, E. W. Huber, W. A. v. d. Donk, G. Yu and J. Stubbe, in *Biomedical Frontiers of Fluorine Chemistry*, ed. I. Ojima, J. R. McCarthy and J. T. Welch, ACS Symposium Series 639, American Chemical Society, Washington, DC, 1996, ch. 18; P. Bey, J. R. McCarthy and I. A. McDonald, in *Selective Fluorination in Organic and Bioorganic Chemistry*, ed. J. T. Welch, ACS Symposium Series 456, American Chemical Society, Washington, DC, 1991, pp. 105–133.
- 4 J. Ichikawa, N. Yokota, M. Kobayashi and T. Minami, *Synlett*, 1993, 186.
- 5 J. Ichikawa, M. Kobayashi, N. Yokota, Y. Noda and T. Minami, *Tetrahedron*, 1994, **50**, 11637; J. Ichikawa, N. Yokota, M. Kobayashi, K. Amano and T. Minami, *Synlett*, 1996, 243.
- 6 J. Ichikawa, M. Kobayashi, Y. Noda, N. Yokota, K. Amano and T. Minami, *J. Org. Chem.*, 1996, **61**, 2763.
- 7 *o*-Substituted β , β -dichloro- and -dibromo-styrenes have recently been reported to undergo intramolecular cyclization *via* electrophilic carbenoids: M. Topolski, *J. Org. Chem.*, 1995, **60**, 5588.
- 8 (*a*) J. E. Baldwin, *J. Chem. Soc., Chem. Commun*., 1976, 734; (*b*) J. E. Baldwin, J. Cutting, W. Dupont, L. Kruse, L. Silberman and R. C. Thomas, *ibid.*, 1976, 736; (*c*) J. E. Baldwin, R. C. Thomas, L. I. Kruse and L. Silberman, *J. Org. Chem.*, 1977, **42**, 3846.
- 9 D. Craig and A. M. Smith, *Tetrahedron Lett.*, 1992, **33**, 695; P. Auvray, P. Knochel and J. F. Normant, *Tetrahedron Lett.*, 1985, **26**, 4455; R. Grigg, J. Kemp, J. F. Malone, S. Rajviroongit and A. Tangthongkum, *Tetrahedron*, 1988, **44**, 5361. For a related example, see: R. D. Chambers and M. P. Greenhall, *J. Chem. Soc., Chem. Commun.,* 1990, 1128.
- 10 A. D. Jones and D. W. Knight, *Chem. Commun.,* 1996, 915; Y. Landais and D. Planchenault, *Synlett,* 1995, 1191 and references cited therein; B. H. Lipshutz and T. Gross, *J. Org. Chem.,* 1995, **60**, 3572 and references cited therein; M. Kimura, H. Harayama, S. Tanaka and Y. Tamaru, *J. Chem. Soc., Chem. Commun*., 1994, 2531.
- 11 For 5-*endo* radical cyclizations onto an unsaturated carbon, see T. Gimisis and C. Chatgilialoglu, *J. Org. Chem.,* 1996, **61**, 1908; T. Sato, N. Chono, H. Ishibashi and M. Ikeda, *J. Chem. Soc., Perkin Trans. 1*, 1995, 1115; A. V. R. Rao, A. K. Singh, K. M. Reddy and K. Ravikumar, *J. Chem. Soc., Perkin Trans. 1*, 1993, 3171. See, also: D. L. J. Clive and W. Yang, *Chem. Commun.,* 1996, 1605. For 5-*endo* radical cyclizations onto a multiple-bonded, first-row heteroatom, see: Y. Yamamoto, M. Ohno and S. Eguchi, *J. Org. Chem.,* 1996, **61**, 9264 and references cited therein.
- 12 M. J. Silvester, *Adv. Heterocycl. Chem.*, 1994, **59**, 1; *Aldrichim. Acta*, 1991, **24**, 31; *Organofluorine Chemistry, Principles and Commercial Applications*, ed. R. E. Banks, B. E. Smart and J. C. Tatlow, Plenum Press, New York, 1994.
- 13 J. Ichikawa, T. Minami, T. Sonoda and H. Kobayashi, *Tetrahedron Lett.*, 1992, **33**, 3779; see also: J. Ichikawa, M. Fujiwara, H. Nawata, T. Okauchi and T. Minami, *Tetrahedron Lett.,* 1996, **37**, 8799.
- 14 For the synthesis of fluoroindoles, see H. F. Hodson, D. J. Madge, A. N. Z. Slawin, D. A. Widdowson and D. J. Williams, *Tetrahedron*, 1994, **50**, 1899. For the synthesis of fluoropyrroles, see Z.-M. Qiu and D. J. Burton, *Tetrahedron Lett.*, 1995, **36**, 5119; J. Leroy and C. Wakselman, *Tetrahedron Lett.*, 1994, **35**, 8605 and references cited therein.
- 15 For the synthesis of fluorobenzo[*b*]furans, see: D. H. R. Barton, R. H. Hesse, G. P. Jackman and M. M. Pechet, *J. Chem. Soc., Perkin Trans. 1*, 1977, 2604. For the synthesis of fluorofurans, see A. K. Forrest and P. J. O'Hanlon, *Tetrahedron Lett.*, 1995, **36**, 2117; K. Burger and B. Helmreich, *J. Chem. Soc., Chem. Commun*., 1992, 348; H. L. Sham and D. A. Betebenner, *J. Chem. Soc., Chem. Commun*., 1991, 1134.
- 16 R. N. Young, J. Y. Gauthier and W. Coombs, *Tetrahedron Lett.*, 1984, **25**, 1753.
- 17 For the synthesis of fluorobenzo[*b*]thiophenes, see; P. Nussbaumer, G. Petrenyi and A. Stütz, *J. Med. Chem.*, 1991, 34, 65. For the synthesis of fluorothiophenes, see K. Burger and B. Helmreich, *Heterocycles,* 1994, **39**, 819.

Received in Cambridge, UK, 7th May 1997; 7/03110F

1538 *Chem. Commun***., 1997**