Reduction of $Ge(Cl)C_6H_3mes_2$ -2,6 to give the cyclotrigermenyl radical $(GeC_6H_3mes_2$ -2,6)₃ and the trigermenyl anion salt $K(GeC_6H_3mes_2$ -2,6)₃

Marilyn M. Olmstead, Lihung Pu, Richard S. Simons and Philip P. Power*

Department of Chemistry, University of California, Davis, California 95616, USA

Treatment of $Ge(Cl)C_6H_3mes_2-2,61$ with 1 equiv. of KC_8 furnishes the new cyclotrigermenyl radical ($GeC_6H_3mes_2-2,6)_3$, 2) which is characterized by EPR and X-ray crystallography; reduction with a further equivalent of KC_8 gives the new trigermenyl allyl anion analogue $K(GeC_6H_3mes_2-2,6)_3$ which has an open Ge₃ framework with a wide Ge–Ge–Ge angle of 159.19(10)°at the central Ge and a Ge–Ge distance of 2.422(2) Å.

Recent reports have shown that sterically crowding ligands with terphenyl substituents can stabilize coordination and bonding not readily observed with other ligands. Prominent examples include low-coordinate metal thiolates such as the monomeric $Fe(SC_6H_3mes_2-2,6)_2^1$ (mes = $C_6H_2Me_3-2,4,6$), the formally aromatic cyclotrigallane $M_3(GaC_6H_3mes_2-2,6)_3$ (M = Na^{2a} or K^{2b}), or the germylyne complex ($\eta^5-C_5H_5$)(CO)₂MoGeC₆H₃-mes₂-2,6 featuring a MoGe triple bond.³ The synthesis of the latter species by the reaction of $Na[Mo(\eta^5-C_5H_5)(CO)_3]^4$ with Ge(Cl)C₆H₃mes₂-2,6, **1**,⁵ has prompted further investigation of the chemistry of the Ge(Cl)C₆H₃mes₂-2,6 species. Here, its reduction to form either the neutral radical (GeC₆H₃mes₂-2,6)₃°, which has a three-membered Ge₃ ring, or the salt K(GeC₆H₃mes₂-2,6)₃, with an open Ge₃ core structure, is described.

Treatment of Ge(Cl)C₆H₃mes₂-2,6, **1**,⁵ with slightly less than 1 equiv. of KC₈⁶ affords the radical (GeC₆H₃mes₂-2,6)₃[•] **2**, as dark blue crystals in moderate yield.[†] In a similar manner, the addition of excess KC₈ (2 equiv. per germanium) gives the anionic trigermanium species (GeC₆H₃mes₂-2,6)₃⁻ as its potassium salt K(GeC₆H₃mes₂-2,6), **3**, which was isolated as dark green crystals.

The structures of both 2 and 3 have been determined by X-ray crystallography.[‡] The data for 2 showed that it crystallizes as crystallographically independent trimeric units which feature a cyclic triangular arrangement of three germaniums (Fig. 1) in

Fig. 1 Crystal strucutre of 2 featuring one possible arrangement of the Ge_3 core. The average Ge–Ge distance is 2.35(7) Å.

which the average Ge–Ge distance is 2.35(7) Å. Unfortunately, the structure displayed disorder problems involving the important core atoms, which adopt a number of slightly different positions such that several plausible Ge₃ triangular arrays are possible which leave the organic ligand atoms unmoved. Nonetheless, the structure could be refined to an overall residual (R_1) value of 0.064. The presence of a disordered core unit is consistent with the formulation of **2** as a substituted cyclogermenyl radical (*i.e.* a germanium analogue of a cyclopropenyl radical). In valence bond terms, the ring in such a species is expected to involve a double bond between two members with the unpaired electron located on the remaining atom. Thus, three orientations (**A**, **B**, **C**) may be written since each germanium bears the same C₆H₃mes₂-2,6 substituent.

The EPR spectrum of **2** in hexane solution at room temp. displays a major signal with g = 2.0069 and has a hyperfine coupling to a single ⁷³Ge (I = 9/2, 7.8% natural abundance) nucleus. The relative intensity of the hyperfine lines in the EPR spectrum is consistent with the location of the unpaired electron on one germanium atom. The π -molecular orbital picture of the ring features a molecular orbital of a symmetry occupied by a pair of electrons and the doubly degenerate e antibonding level occupied by the unpaired electron. The relatively low hyperfine coupling, a (⁷³Ge) = 16 G, is consistent with the location of the unpaired electron in an orbital of π -symmetry indicating planar or near-planar geometry at the germanium center.

Treatment of 1 with 2 equiv. of KC_8^6 affords the anionic species 3 (Fig. 2) as its potassium salt. Apparently, the addition of a further electron to 2 results in the opening of the Ge₃ ring to afford a trigermenyl analogue of the allyl anion (Scheme 1).

The structure of **3** is characterized by a two-fold rotation axis of symmetry along the C(1)-Ge(1) axis implying planar geometry at Ge(1). The torsion angle between the C(1) ring and the coordination plane at Ge(1) is 81.2°. The potassium countercation is complexed in a π fashion by the C(5) (K-centroid 2.68 Å) and C(20) (K-centroid 2.84 Å) mesityl rings and occupies the two possible coordination sites with equal probability (i.e. 50% occupancy of each site). The complexing mesityl rings form a bent sandwich structure at the K⁺ ion which also interacts very closely with a methyl group $[K^+\cdots C(35) 2.81\text{\AA}]$ from the C(29) methyl ring. The $K^+\cdots \pi$ interactions are at the lower end of the range previously [*cf.* K–C range 3.142(5)-3.253(4) Å and observed K-centroid of 2.87 Å in (pmdeta)(thf)KCPh₃;⁷ K-C 3.167(2)-3.288(2) Å in {(pmdeta)KCH₂Ph_{∞}}.⁸]. The Ge₃ array is characterized by a wide Ge(2)-Ge(1)-Ge(2a) angle of 159.19(10) Å and a Ge(1)-Ge(2) distance of 2.422(2) Å. The Ge(1)-C(1) and Ge(2)-C(14) distances are 2.048(14) and 2.022(10) Å. In addition, the Ge(1)–Ge(2)–C(14) angle is

Chem. Commun., 1997 1595

Fig. 2 Crystal structure of **3**. The 50% K⁺ occupancy of each site is indicated by displaying only one set of K⁺ mesityl interactions. Some important bond distances (Å) and angles (°) are: Ge(1)–Ge(2) 2.422(2), Ge(2)–Ge(1)–Ge(2A) 159.19(10), Ge(1)–Ge(2)–C(14) 111.3(3). Further data are given in the text.

111.3(3)° and there is a torsion angle of 20.6° in the C(14)–Ge(2)—Ge(2a)–C(14a) array. These geometrical features are consistent with the description of the (GeC₆H₃mes₂-2,6)₃⁻ ion as an allyl anion analogue in which the (*Z*-oriented) lone pairs of the two outer germaniums behave as phantom ligands.

In many respects the structures of 2 and 3 complement that of the recently reported cyclotrigermenium cation [GeSiBut₃]₃+ 49 which has a formally aromatic 2π -electron system with an average Ge–Ge bond distance of 2.326(4) Å, cf. Ge–Ge double bond distance of 2.239(4) Å in the Ge3 ring species $c-[{GeSiBut_3}_2{Ge(SiBut_3)_2}]$.¹⁰ The addition of a further electron may afford a neutral cyclotrigermenyl radical species exemplified by 2, which contains an unpaired electron in a doubly degenerate antibonding π orbital. The average Ge–Ge bond length observed in 2 is 2.327(12) Å which is very similar to that in 4 and ca. 0.1 Å shorter than a normal Ge–Ge single bond, 2.44 Å.¹¹ However, the large standard deviations in the structural parameters of 2, as well as the different type of substituent, make such a comparison of limited value. Further reduction of 2 affords 3. Presumably, the addition of a second electron to 2 results in sufficient destabilization of the structure to effect its rearrangement to give 3. In MO terms the HOMO in the open structure is non-bonding rather than antibonding as it would be if the ring structure were retained. The average Ge-Ge bond length in 3 is ca. 0.1 Å longer than that seen in 4. It is probable that the increased interelectronic repulsion owing to the negative charge, coupled with the 20.6° torsion angle between the planes at Ge(2) and Ge(2a), contributes to the lengthening of the Ge-Ge bonds which are only marginally shorter than a normal Ge-Ge single bond.¹¹ Further investigation of the chemical and spectroscopic properties of 2 and 3 and their tin analogues is in progress.

We thank the National Science Foundation and the Donors of the Petroleum Fund administered by the American Chemical Society for generous financial support.

Footnotes and References

* E-mail: pppower@ucdavis.edu

[†] All manipulations were carried out under anaerobic and anhydrous conditions. The compound $Ge(Cl)C_6H_3mes_2-2,6,^5$ which exists as Ge–Ge bonded dimer in the solid, and KC_8 ⁶ were synthesized as described in the literature.

2.0.5thf. To a well stirred solution of 1 (0.42 g, 1.0 mmol) in thf (15 ml) was added KC₈ (0.135 g, 0.85 mmol) *via* a solids-addition tube. The solution which was initially yellow became a very dark red, almost black, color. After 3 h all the KC₈ appeared to have been consumed, whereupon the volatile materials were removed under reduced pressure. The black residue was extracted with hexane (2×20 ml) and the solution was filtered through Celite. The volume was reduced to *ca*. 20 ml and the solution was placed in a -20 °C freezer for 4 days to afford a mixture of a minor amount of microcrystals in the solution and decanting rapidly with a cannula to afford X-ray quality crystals of 2-thf [mp > 100 °C (decomp.)]. Yield 0.13 g, 28.5%. The thf in 2-0.5thf may be removed by prolonged (12 h) pumping at 0.01 mmHg.

3·0.5C₆H₁₄, LiC₆H₃mes₂-2,6¹² (1.2 g, 3.73 mmol) was added *via* a solidsaddition funnel to GeCl₂ dioxane (0.86 g, 3.73 mmol) in thf (30 ml) and stirred for 3 h. KC₈ (1.01 g, 7.4 mmol) was then added *via* a solids-addition funnel and the mixture was stirred for a further 2 h. The volatile materials were then removed under reduced pressure and the residue was extracted with 30 ml of hexane-toluene (4:1). The solution was filtered through Celite and concentrated to *ca*. 20 ml. Storage of 2 days in a $-20 \,^{\circ}$ C freezer afforded the product **3** as dark green crystals. Yield 0.35 g, 0.29 mmol, 23.5%. Mp 180–2 °C, ¹H NMR(C₇D₈) δ 2.02 (s, 24H, *o*-CH₃), 2.03 (s, 12H, *o*-CH₃), 2.21 (s, 6H, *p*-CH₃), 2.26 (s, 12H, *p*-CH₃), 6.63 (s, 8H, *m*-mes), 6.767 (d, 6H, *J*_{HH} 6.9 Hz), 6.84 (s, 4H, m-mes), 7.08 (t, 3H, *J*_{HH} 7.0 Hz), *p*-C₆H₃). ¹³C{¹H} NMR (C₆D₆) δ 21.16, 22.69 (*o*-CH₃), 22.89, 23.19 (*p*-CH₃), 135.02, 135.82, 130.45, 137.96, 138.55, 139.14, 139.62, 141.18, 142.19, 143.23, 143.91, 145.55, 145.85 (aryl). UV–VIS (λ_{max} , ε : 266 nm, $\varepsilon = 7000 \, dm^3 \, mol^{-1} \, cm^{-1}$).

‡ *Crystal data* for **2**·0.5thf and **3** (*T* = 130 K, Cu-Kα = 1.54178Å): **2**·0.5thf, C₇₄H₇₉GeO_{0.5}, *M* = 1194.14, monoclinic, space group *C*2/*c*, *a* = 43.284 (5), *b* = 12.921(2), *c* = 22.746(3) Å, *β* = 102.78(1)°, *V* = 12435(3) Å³, abs. coeff. = 2.022 mm⁻¹, *Z* = 8, *wR*₂ = 0.1756 for all 8408 data, *R*₁ = 0.064 for 6387 [*I* > 2σ(*I*)] data.

3.0.5 C₆H₁₄, C₇₅H₈₂Ge₃K, M = 1240.28, monoclinic, space group C2/c, a = 17.865(6), b = 17.994(5), c = 23.323(9) Å, $\beta = 108.06(3)^{\circ}$, V = 71284 Å³, abs. coeff. = 2.288 mm⁻¹, Z = 4, $wR_2 = 0.2453$ for all 4665 data, $R_1 = 0.09$ for 3170 [$I > 2\sigma(I)$] data. CCDC 182/523.

- J. J. Ellison, K. Ruhlandt-Senge and P. P. Power, *Angew. Chem.*, 1994, 106, 1248; *Angew. Chem., Int. Ed. Engl.*, 1994, 33, 1000.
- 2 (a) X.-W. Li, W. T. Pennington and G. H. Robinson, J. Am. Chem. Soc., 1995, **117**, 7578; (b) X.-W. Li, Y. Xie, P. R. Schreiner, K. D. Gripper, R. C. Crittendon, C. F. Campana, H. F. Schaefer and G. H. Robinson, Organometallics, 1996, **15**, 3798.
- 3 R. S. Simons and P. P. Power, J. Am. Chem. Soc., 1996, 118, 11966.
- 4 R. G. Hayter, Inorg. Chem., 1963, 2, 1031.
- 5 R. S. Simons, L. Pu, M. M. Olmstead and P. P. Power, *Organometallics*, 1997, **16**, 1920.
- 6 I. S. Weitz and M. Rabinovitz, J. Chem. Soc., Perkin Trans. 1, 1993, 117.
- 7 D. Hoffmann, W. Bauer, P.v.R. Schleyer, U. Pieper and D. Stalke, *Organometallics*, 1993, **12**, 1193.
- 8 D. Hoffmann, W. Bauer, F. Hampel, N. J. R. van Eikema Hommes, P.v.R. Schleyer, P. Otto, U. Pieper, D. Stalke, D. S. Wright and R. Snaith, J. Am. Chem. Soc., 1996, 116, 528.
- 9 A. Sekiguchi, M. Tsukamoto and M. Ichinohe, *Science*, 1997, 275, 5296.
- 10 A. Sekiguchi, H. Yamazaki, C. Kabuto and H. Sakurai, J. Am. Chem. Soc., 1995, 117, 8025.
- 11 A. F. Wells, *Structural Inorganic Chemistry*, Clarendon, Oxford, 3rd edn., 1986, p. 1279.
- 12 K. Ruhlandt-Senge, J. J. Ellison, R. J. Wehmschulte, F. Pauer and P. P. Power, J. Am. Chem. Soc., 1993, 115, 11353.

Received in Bloomington, IN, USA, 2nd May 1997; 7/03037A