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5,10-Diphenyltripyrrane, a useful building block for the synthesis of
meso-phenyl substituted expanded macrocycles

Christian Brückner, Ethan D. Sternberg, Ross W. Boyle and David Dolphin*

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada

Pyrrole and benzaldehyde were condensed under acidic
conditions to produce a mixture of 5-phenyldipyrromethane
and 5,10-diphenyltripyrrane; the tripyrrane was utilized in
syntheses of meso-phenylsapphyrins, meso-diphenylpenta-
phyrin and meso-hexaphenylhexaphyrin.

Expanded porphyrins1 are a diverse class of pyrrolic com-
pounds containing a larger macrocycle than that found in
porphyrins. They are being utilized in fields such as photody-
namic therapy (PDT),2 neutral substrate binding, anion recogni-
tion3 and annulene research.4 Although b-unsubstituted meso-
aryl substituted porphyrins are very prominent in the synthetic
porphyrin field,5 they are rarely found in expanded porphyr-
ins.6–8 This, perhaps, reflects the lack of a suitable building
block as well as the reduced stability of some of these systems,
as will be outlined below. 

We report here the improved preparation of 5-phenyldi-
pyrromethane, itself an important building block for meso-
phenylporphyrinoids,8 the one-step synthesis of the novel
building block 5,10-diphenyltripyrrane and its use in 3 + 2- and
3 + 3-type syntheses to yield three meso-phenyl substituted
sapphyrins varying in their b-substituents, a partially
b-substituted pentaphyrin and a fully b-unsubstituted meso-
hexaphenylhexaphyrin.

5-Phenyldipyrromethane 1 was synthesized by condensing
excess pyrrole 2 and benzaldehyde 3 in the presence of an acid
according to the procedures of Lee and Lindsey9 or Carrel,10

with the exception that generally 50% lower benzaldehyde to
pyrrole ratios were used and, most importantly, work-up
procedures were altered. The crude oils resulting from the
condensation were, after pre-purification by column chromat-
ography, transferred into a sublimation apparatus and heated
under high vacuum (Scheme 1). Under these conditions, 1
sublimed as a white crystalline material of analytical purity. The
reaction could be scaled up to provide up to 15 g (ca. 50% yield)
of 1 per run. The residue left in the bottom of the sublimation
apparatus hardened, upon cooling, into a red–orange glass.
Analysis of this glass proved that it contained ca. 95%
5,10-diphenyltripyrrane 4.† Lee and Lindsey9 and Vigmond
et al.11 have previously reported the occurrence of a small
amount of an unstable tailing component which, based on 1H
NMR spectroscopy, was provisionally assigned structure 4. In
subsequent work, Lee and co-workers synthesized this tri-
pyrrane in a multi-step procedure and utilized it in the formation

of heteroporphyrins.11 Tripyrrane 4 was obtained by us in yields
ranging typically from 10–20%, and, even when ground into a
powder, is stable in the solid form but could not, in our hands,

Scheme 1 Reagents and conditions: i, pyrrole, PhCHO (1 : 10) (neat), TFA
(5%), 1 h, under N2, or pyrrole, PhCHO (1 : 8), PhMe, reflux, TsOH (cat.),
under N2; ii, evaporation of solvents in vacuo; iii, flash chromatography
(silica gel, CH2Cl2); iv, sublimation at 130 °C at 1 torr, initial heating: 1 °C
min21

Scheme 2 Reagents and conditions: i, abs. EtOH (1 mm), O2 bubble, TsOH
(4 equiv.); evaporation of solvents in vacuo; column chromatography
(neutral alumina, activity I, 2.5% MeOH–CH2Cl2); ii, CH2Cl2, under N2,
BF3·Et2O (cat.), 1 h; chloranil, reflux, 30 min; evaporation of solvents in
vacuo; column chromatography (neutral alumina, activity I, 2.5% MeOH–
CH2Cl2); preparative TLC (alumina, 1 : 1 CH2Cl2–CCl4); iii, abs. EtOH (1
mm), O2 bubble, TsOH (4 equiv.); evaporation of solvents in vacuo;
trituration with CHCl3; preparative TLC (silica gel, 0.5% MeOH–CH2Cl2);
iv, CH2Cl2, TFA (cat.), 48 h, room temp., neutralisation with Et3N, then an
additional 36 h; column chromatography (neutral alumina, 1–3% MeOH–
Ch2Cl2); then preparative TLC (silica gel, CH2Cl2–20% EtOAc–1%
Et3N)
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be further purified without retrieving it as an unstable oil. We
attribute this, in part, to the presence of three stereoisomers in 4.
This route to tripyrrane 4 is comparatively simple given that the
syntheses of b-alkyltripyrranes generally involve many reaction
steps from starting materials which are not commercially
available, unlike pyrrole and benzaldehyde. It is anticipated that
the ease of preparation of 4 will encourage its use as a synthetic
building block.

With the novel 5,10-diphenyltripyrrane 4 in hand, we had the
opportunity to prepare meso-diphenyl substituted sapphyrins 5
and 7‡ and, in a four-component Rothemund-type condensa-
tion, meso-tetraphenylsapphyrin 6 (Scheme 2). Recently, Sess-
ler et al. published the synthesis of 5 via a multi-component
condensation under Lindsey-type conditions6 and Chmielewski
et al. published the isolation of sapphyrin 6 as a side-product
from a Rothemund synthesis of tetraphenylporphyrin.7 Both
procedures, however, produce the particular sapphyrins in low
yields (ca. 10 and 1.1%, respectively) and both require
extensive chromatographic work-up. The syntheses presented
here using the preformed tripyrrolic precursor are short,
produce up to 39% yield in the final sapphyrin condensation (for
5) and, due to the absence of any other porphyrinic by-products,
require only minimal chromatographic work-up. The inversion
of one pyrrolic unit in 7 upon protonation–deprotonation as
observable by NMR spectroscopy is analogous to that described
before for 6.7 The meso-positions flanking the ‘flipping’
pyrrolic unit do not participate in this inversion.

A TFA catalysed 3 + 2-type condensation of tripyrrane 4 and
dipyrromethane 8 in the presence of nitrogen, followed by
treatment with base and then by chromatography, produced the
orange meso-diphenyltetra-b-alkyl pentaphyrin 9 in 13% yield
(Scheme 2). The pentaphyrin was characterized by 1H NMR
spectroscopy, mass spectrometry and UV-VIS spectroscopy.§
Its optical properties are similar to those of previously reported
b-alkyl pentaphyrins.13 The strongly solvent-dependent 1H
NMR spectrum can be rationalized in terms of inversions of
pyrrolic units similar to those observed in sapphyrins. However,
unlike the stable b-alkyl pentaphyrins, this macrocycle ex-
hibited poor stability even in the solid state and decomposed
when exposed to air, with a half-live of several days. It remains
to be seen whether the macrocycle can be stabilized by metal
complexation.14

On the other hand, a 3 + 3-type condensation reaction
employing 4 and benzaldehyde 3 furnished, after oxidation with
chloranil and chromatography, a blue product which could be
identified by its mass and UV-VIS spectra as the meso-
hexaphenylhexaphyrin 10.¶ Its 1H NMR was complex and

largely depended on pH and the nature of the solvent. This may
reflect its non-static conformation. Such flexibility of the
macrocycle has also been observed for b-alkyl hexaphyrins.
Further studies of this macrocycle were hampered by its
instability. 

The above examples prove the synthetic utility of 4. It also
emerges that the meso-phenyl substituted versions of the larger

expanded macrocycles pentaphyrin and hexaphyrin exhibit a
significantly decreased stability when compared with their
b-alkyl analogues. This stability trend has been observed
before,8 and, if this is a general trend, may limit the extent to
which meso-phenyl substituted analogues of other known
expanded macrocycles can be made.

This work was supported by the Natural Sciences and
Engineering Council of Canada.

Footnotes and References

* E-mail: david@dolphin.chem.ubc.ca
† Selected data for 4: 1H NMR (200 MHz, CD2Cl2): d 5.35 (s, 2 H), 5.78 (d,
J = 4, 2 H), 5.89 (s, 2 H), 6.14 (m, 2 H), 6.66 (m, 2 H), 7.15–7.38 (m, 10
H), 7.75 (br s, 1 H), 7.88 (br s, 2 H); HRMS (EI, 200 °C) C26H23N3 requires
377.1892. Found: 377.1881. 
‡ Selected data for 7: 1H NMR (400 MHz, CDCl3): d21.52 (s, 2 H), 20.1
(br s, 1 H), 7.15–7.20 (m, 1 H), 7.25–7.30 (m, 1 H), 7.60 (t, 3J 7, 2 H), 7.85
(t, 3J 8, 4 H), 8.49 (br s, 4 H), 9.24 (d, 3J 4.5, 2 H), 9.43 (d, 3J 4.5, 2 H), 9.60
(d, 3J 4.5, 2 H), 10.20 (d, 3J 5.0, 2 H), 10.27 (s, 2 H); lmax/nm (CH2Cl2–trace
Et3N) (log e) 478 (4.86), 506 (4.71), 626 (3.67), 686 (3.97), 708 (sh), 786
(3.62); HRMS (EI, 180 °C) C36H25N5 requires 527.21100. Found:
527.21015. For 7·2HCl: lmax/nm (CH2Cl2–trace HCl) (log e) 482 (5.47),
656 (4.13), 682 (4.13), 724 (sh), 758 (4.70) nm.
§ Selected data for 9: 1H NMR (400 MHz, CDCl3–TFA): d23.6 (br s, 1 H),
2.9 (br s, 2 H), 2.12 (t, 3J 8.2, 6 H), 4.08 (s, 6 H), 4.56 (br q, 3J 8, 4 H), 7.5
(br m, 10 H), 8.1 (m, 4 H), 8.6 (br s, 2 H), 11.4 (s, obscured by TFA signal),
11.5 (s, obscured by TFA signal); lmax/nm (CH2Cl2–TFA) (log e) 492
(1.21), 682 (0.072), 742 (0.046); HRMS (LSIMS, thioglycerol) C43H40N5

requires 626.32837. Found: 626.32756.
¶ Selected data for 10: lmax/nm (CH2Cl2) (rel. intensity) 385 (0.95), 466
(0.46), 520 (0.5) 636 (1.0); HRMS (EI, 350 °C) C66H44N6 requires
920.36273. Found: 920.36550.
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