Montserrat Oliván and Kenneth G. Caulton*

Department of Chemistry, Indiana University, Bloomington, IN 47405-4001, USA

 $[Ru(H)_2(H_2)_2L_2]$ [L = P(C₆H₁₁)₃] serves as a formal source of zerovalent 'RuL₂', and undergoes unprecedented oxidative addition of both C–Cl bonds of CH₂Cl₂ to a single metal center, providing a convenient synthesis of the alkene metathesis catalyst [Ru(CH₂)Cl₂L₂].

Ruthenium carbenes of the form $[Ru(CRR')Cl_2L_2]$ (L = phosphine) play a central role in alkene metathesis methodology in organic chemistry. The original form¹ of the ruthenium catalyst has now been simplified,² but access to carbene complexes remains less than rational: α -elimination from an alkyl complex or use of a diazoalkane reagent are the primary synthetic methodologies.

$$L_nM + X_2CRR' \rightarrow L_n(X)_2M = CRR'$$
(1)

gem-Dihalogeno compounds are formally attractive as a source of a carbene ligand [eqn. (1)], but converting this idea into reality has been elusive. Eqn. (1) makes clear that L_nM must be a 14-valence electron species, or its equivalent, and the scarcity of such species accounts for the rarity of eqn. (1). Eqn. (1) might be expected to proceed stepwise, with an X-M-CRR'X intermediate, and indeed, there are numerous examples of halogenomethyl ligands that have been formed from CX₂RR'.³ However, a double oxidation addition of an R₂CX₂ sp³ carbon is unprecedented. Set against this background, we report here the first oxidative addition of both C-Cl bonds of a gem-dihalide to a single metal center, where all constituents of R_2CX_2 become attached to a single metal in the product,⁴ and an example where this occurs in high yield to produce the simplest of ruthenium alkene metathesis catalysts, [Ru(CH₂)Cl₂L₂], with $L = P(C_6H_{11})_3$

Reaction[†] of $[Ru(H)_2(H_2)_2L_2]$ [L = P(C₆H₁₁)₃] with CH₂Cl₂ in pentane or benzene under argon occurs over 3 h at 25 °C (1:4 mol ratio) or 15 min at 60 °C (1:1.5 mole ratio) to give the known molecule [RuCl₂(CH₂)L₂],^{2b} characterized by ¹H, ¹³C and ³¹P NMR spectroscopies. The ¹H NMR signal of the carbene ligand is the most unique spectroscopic feature, appearing at δ 19.4. If the reaction is carried out with CD₂Cl₂, $[RuCl_2(CD_2)L_2]$ is the only isotopomer produced (¹H and ²H NMR assay),‡ showing that there is no scrambling of the metaland carbon-derived hydrogen. This reaction is remarkable because it involves a four-electron reduction of CH₂Cl₂ (to Cland what is formally CH_2^{2-}). It thus depends upon $[Ru(H)_2(H_2)_2L_2]$ being a formal source of uncharged RuL_2 (*i.e.* zerovalent Ru), by virtue of reductive elimination of hydride from Ru^{II}, as H₂. When this reaction is repeated in a closed NMR tube, we see $({}^{31}P{}^{1}H{} NMR)$ no growth and decay of any intermediate. Since there is no evidence for production of CH₃Cl or CH₄, this reaction is an unprecedented oxidative addition of both C-Cl bonds of CH₂Cl₂ to a single metal center. This reaction proceeds more slowly in an NMR tube under 1 atm argon, than in a well agitated, round-bottom flask with a considerable head-space, a fact we attribute to the accumulation of H_2 , which shifts eqn. (2) to the left and thus decreases the amount of unsaturated $[Ru(H)_2(H_2)L_2]$, which is apparently the necessary reaction partner for CH2Cl2.5

$$[\operatorname{Ru}(H)_2(H_2)_2L_2] \leftrightarrows [\operatorname{Ru}(H)_2(H_2)L_2] + H_2$$
(2)

This idea of competitive inhibition by H_2 is supported by the fact that, if $[Ru(H)_2(H_2)_2L_2]$ is stirred with CH_2Cl_2 (1:4) at 25 °C under 1 atm H_2 in pentane, there is no reaction over 3 h. The reaction is thus not outer-sphere electron transfer from $[Ru(H)_2(H_2)_2L_2]$, and a 16-electron complex is the reactive species.

Since $[RuH_3ClL_2]^6$ is also produced in <15% yield in this reaction, we considered that HCl {which we independently verified could convert $[Ru(H)_2(H_2)_2L_2]$ to $[RuH_3(Cl)L_2]$ } might participate in the reaction which forms the carbene complex. However, when the reaction of $[Ru(H)_2(H_2)_2L_2]$ with CH_2Cl_2 is executed in the presence of NEt₃ (1:4:2 mole ratio), the carbene product and yield are unchanged, as is (qualitatively) the rate. No $[NHEt_3]Cl$ precipitates. This gives support for the idea that H₂ is the fate of all metal-bound H, that $[RuH_3(Cl)L_2]$ is produced in a side reaction, and that a 'ClRuCH₂Cl' species mediates the reaction. However, any such species must react further to give carbene product faster than it reacts with NEt₃, to quaternize the amine (giving 'ClRuCH₂-NEt₃+' and Cl⁻); chloromethyl ligands readily react with nucleophiles.^{3a}

The idea of multiple oxidative addition to $[Ru(H)_2(H_2)_2L_2]$, and the idea that facile multiple losses of H₂ from this molecule permits it to serve as a formal equivalent of zerovalent 'RuL₂' deserves further exploration.

This work was supported by the NSF and by material support from Johnson-Matthey/Aesar. M. O. thanks the Spanish Ministerio de Educación y Cultura for a postdoctoral fellowship.

Footnotes and References

* E-mail: caulton@indiana.edu

 \dagger [RuCl₂(=CH₂){P(C₆H₁₁)₃}₂] (method A): To a suspension of [RuH₂(H₂)₂{P(C₆H₁₁)₃}₂]⁷ (100 mg, 0.15 mmol) in pentane (7 ml) was added CH₂Cl₂ (38 µl, 0.60 mmol) *via* a syringe. The resulting suspension was stirred at room temp. for 3 h. During this time, the suspension changed from white to brown–red. The red solid obtained by filtration was washed with pentane and dried *in vacuo*. Yield: 70 mg (63%). Alternatively (method B), the reaction could be carried out heating at 60 °C for 15 min, starting from [RuH₂(H₂)₂{P(C₆H₁₁)₃}₂] (100 mg, 0.15 mmol) and CH₂Cl₂ (14.4 µl, 0.22 mmol) in pentane (5 ml). Yield: 75 mg (67%). All the spectroscopic data are consistent with those reported previously.^{2b} When the crude suspension was dried *in vacuo* and dissolved in C₆D₆, ¹H and ³¹P NMR show the presence of [RuH₃Cl{P(C₆H₁₁)₃}₂], in a yield of <15%. This was shown independently to be formed by the action of H₂ on [Ru(CH₂)Cl₂{P(C₆H₁₁)₃]₂].

 $\$ [RuCl₂(=CD₂){P(C₆H₁₁)₃}₂]: this compound was prepared analogously as described for [RuCl₂(=CH₂){P(C₆H₁₁)₃}₂] (method A) by starting from [RuH₂(H₂)₂{P(C₆H₁₁)₃}₂] (50 mg, 0.075 mmol) and CD₂Cl₂ (19 µl, 0.30 mmol). ²H NMR (61 MHz, C₆H₆): δ 19.40 (s, Ru=CD₂).

- 1 S. D. Nguyen, L. K. Johnson, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1992, 114, 3974.
- 2 (a) P. Schwab, M. B. France, J. W. Ziller and R. H. Grubbs, Angew. Chem., Int. Ed. Engl., 1995, 34, 2039; (b) P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1996, 118, 100.
- 3 (a) H. B. Friedrich and J. R. Moss, Adv. Organomet. Chem., 1991, 33, 235; (b) H. Werner, Angew. Chem., Int. Ed. Engl., 1983, 22, 927;

Chem. Commun., 1997 1733

(c) H. Haarman, J. M. Ernsting, M. Kranenburg, H. Kooijman, N. Veldman, A. L. Spek, P. W. N. M. van Leeuwen and K. Vrieze, Organometallics, 1997, 16, 887; (d) M. Huser, M. Youinou and J. Osborn, Angew. Chem., Int. Ed. Engl., 1989, 28, 1386; (e) W. Herrmann, W. R. Thiel, C. Brossmer and K. Ofele, J. Organomet. Chem., 1993, 461, 51.

- 4 For examples of $M_2 + R_2CX_2 \rightarrow XM(\mu-CR_2)MX$, see; M. A. Ciriano, M. A. Tena and L. A. Oro, J. Chem. Soc., Dalton Trans., 1992, 2123; G. E. Ball, W. R. Cullen, M. D. Fryzuk, B. R. James and S. J. Rettig, Organometallics, 1991, **10**, 3767; S. J. Young, B. Kellenberger, J. H. Reibenspies, S. E. Manning, O. P. Anderson and J. K. Stille, J. Am. Chem. Soc., 1988, **110**, 5744.
- 5 Eqn. (2) is apparently the mechanism by which N_2 adds to $[Ru(H)_2(H_2)_2L_2]$ to give $[Ru(H)_2(N_2)_2L_2]$; S. Sabo-Etienne, M. Hernandez, G. Chung, B. Chaudret and A. Castel, *New J. Chem.*, 1994, **18**, 175; M. L. Christ, S. Sabo-Etienne, G. Chung and B. Chaudret, *Inorg. Chem.*, 1994, **33**, 5316.
- 6 B. Chaudret, G. Chung, O. Eisenstein, S. A. Jackson, F. J. Lahoz and J. A. López, J. Am. Chem. Soc., 1991, 113, 2314; M. L. Christ, S. Sabo-Etienne and B. Chaudret, Organometallics,, 1994, 13, 3800.
- 7 B. Chaudret and R. Poilblanc, Organometallics, 1985, 4, 1722.

Received in Bloomington, IN, USA, 6th May 1997; 7/03097E