Montserrat Oliván and Kenneth G. Caulton*

Department of Chemistry, Indiana University, Bloomington, IN 47405-4001, USA

 $[Ru(H)₂(H₂)₂L₂] [L = P(C₆H₁₁)₃]$ serves as a formal source **of zerovalent 'RuL2', and undergoes unprecedented oxida**tive addition of both C–Cl bonds of CH₂Cl₂ to a single metal **center, providing a convenient synthesis of the alkene** metathesis catalyst $[Ru(CH_2)Cl_2L_2]$.

Ruthenium carbenes of the form $[Ru(CRR')Cl₂L₂]$ (L = phosphine) play a central role in alkene metathesis methodology in organic chemistry. The original form1 of the ruthenium catalyst has now been simplified, $\frac{3}{2}$ but access to carbene complexes remains less than rational: α -elimination from an alkyl complex or use of a diazoalkane reagent are the primary synthetic methodologies.

$$
L_nM + X_2CRR' \to L_n(X)_2M=CRR'
$$
 (1)

gem-Dihalogeno compounds are formally attractive as a source of a carbene ligand [eqn. (1)], but converting this idea into reality has been elusive. Eqn. (1) makes clear that L*n*M must be a 14-valence electron species, or its equivalent, and the scarcity of such species accounts for the rarity of eqn. (1). Eqn. (1) might be expected to proceed stepwise, with an X–M– $CRR'X$ intermediate, and indeed, there are numerous examples of halogenomethyl ligands that have been formed from $CX₂RR'₃$ However, a double oxidation addition of an $R₂CX₂$ sp³ carbon is unprecedented. Set against this background, we report here the first oxidative addition of both C–Cl bonds of a *gem*-dihalide to a single metal center, where all constituents of R_2CX_2 become attached to a single metal in the product,⁴ and an example where this occurs in high yield to produce the simplest of ruthenium alkene metathesis catalysts, $[\text{Ru(CH}_2)Cl_2L_2]$, with $L = P(C_6H_{11})_3$.

Reaction† of $[Ru(H)₂(H₂)₂L₂] [L = P(C₆H₁₁)₃] with CH₂Cl₂$ in pentane or benzene under argon occurs over 3 h at 25 °C (1 : 4 mol ratio) or 15 min at 60 \degree C (1:1.5 mole ratio) to give the known molecule $[RuCl_2(CH_2)L_2]$,^{2*b*} characterized by ¹H, ¹³C and 31P NMR spectroscopies. The 1H NMR signal of the carbene ligand is the most unique spectroscopic feature, appearing at δ 19.4. If the reaction is carried out with CD_2Cl_2 , $[RuCl_2(CD_2)L_2]$ is the only isotopomer produced (¹H and ²H) NMR assay),‡ showing that there is no scrambling of the metaland carbon-derived hydrogen. This reaction is remarkable because it involves a four-electron reduction of CH_2Cl_2 (to Cl ⁻ and what is formally CH_2^{2-}). It thus depends upon $[Ru(H)₂(H₂)₂L₂]$ being a formal source of uncharged $RuL₂$ (*i.e.* zerovalent Ru), by virtue of reductive elimination of hydride from Ru^H , as $H₂$. When this reaction is repeated in a closed NMR tube, we see $({}^{31}P\{^{1}H\}$ NMR) no growth and decay of any intermediate. Since there is no evidence for production of $CH₃Cl$ or $CH₄$, this reaction is an unprecedented oxidative addition of both C–Cl bonds of CH_2Cl_2 to a single metal center. This reaction proceeds more slowly in an NMR tube under 1 atm argon, than in a well agitated, round-bottom flask with a considerable head-space, a fact we attribute to the accumulation of H2, which shifts eqn. (2) to the left and thus decreases the amount of unsaturated $[Ru(H)₂(H₂)L₂]$, which is apparently the necessary reaction partner for $CH₂Cl₂$.⁵

$$
[Ru(H)2(H2)2L2] \Leftrightarrow [Ru(H)2(H2)L2] + H2 (2)
$$

This idea of competitive inhibition by H_2 is supported by the fact that, if $\text{[Ru(H)_2(H_2)_2L_2]}$ is stirred with CH_2Cl_2 (1:4) at 25 °C under 1 atm H_2 in pentane, there is no reaction over 3 h. The reaction is thus not outer-sphere electron transfer from $[Ru(H)₂(H₂)₂L₂]$, and a 16-electron complex is the reactive species.

Since RuH_3Cl_2 ⁶ is also produced in <15% yield in this reaction, we considered that HCl {which we independently verified could convert $[Ru(H)₂(H₂)₂L₂]$ to $[RuH₃(Cl)L₂]₂$ might participate in the reaction which forms the carbene complex. However, when the reaction of [Ru(H)₂(H₂)₂L₂ with CH_2Cl_2 is executed in the presence of NEt₃ (1:4:2 mole ratio), the carbene product and yield are unchanged, as is (qualitatively) the rate. No [NHEt₃]Cl precipitates. This gives support for the idea that H_2 is the fate of all metal-bound H, that $[RuH_3(Cl)L_2]$ is produced in a side reaction, and that a 'ClRuCH2Cl' species mediates the reaction. However, any such species must react further to give carbene product faster than it reacts with NEt₃, to quaternize the amine (giving 'ClRuCH₂- $NEt₃$ ⁺ and Cl⁻); chloromethyl ligands readily react with nucleophiles.3*a*

The idea of multiple oxidative addition to [Ru(H)₂(H₂)₂L₂] , and the idea that facile multiple losses of H_2 from this molecule permits it to serve as a formal equivalent of zerovalent 'RuL₂' deserves further exploration.

This work was supported by the NSF and by material support from Johnson-Matthey/Aesar. M. O. thanks the Spanish Ministerio de Educación y Cultura for a postdoctoral fellowship.

Footnotes and References

* E-mail: caulton@indiana.edu

 $\ddot{\textbf{i}}$ [RuCl₂(=CH₂){P(C₆H₁₁)₃}₂] (method A): To a suspension of $[RuH_2(H_2)_2\{P(C_6H_{11})_3\}_2]^7$ (100 mg, 0.15 mmol) in pentane (7 ml) was added CH_2Cl_2 (38 μ l, 0.60 mmol) *via* a syringe. The resulting suspension was stirred at room temp. for 3 h. During this time, the suspension changed from white to brown–red. The red solid obtained by filtration was washed with pentane and dried *in vacuo*. Yield: 70 mg (63%). Alternatively (method B), the reaction could be carried out heating at 60 $^{\circ}$ C for 15 min, starting from $\text{[RuH}_2\text{(H}_2)_2\text{[P(C₆H₁₁)₃]}$ (100 mg, 0.15 mmol) and CH₂Cl₂ (14.4 µI, 0.22 mmol) in pentane (5 ml) . Yield: $75 \text{ mg } (67\%)$. All the spectroscopic data are consistent with those reported previously.2*b* When the crude suspension was dried *in vacuo* and dissolved in C₆D₆, ¹H and ³¹P NMR show the presence of $[RuH_3Cl{P(C_6H_{11})_3}_2]$,⁶ in addition to $[RuCl_2(=CH_2)\{P(C_6H_{11})_3\}_2]$, in a yield of <15%. This was shown
independently to be formed by the action of H₂ on formed by the action of H_2 on $[Ru(CH_2)Cl_2{P(C_6H_{11})_3}_2].$

 \ddagger [RuCl₂(=CD₂){P(C₆H₁₁)₃}₂]: this compound was prepared analogously as described for $[RuCl_2(*CH*₂)(P(C₆H₁₁)₃)₂]$ (method A) by starting from $[RuH_2(H_2)_2\{P(C_6H_{11})_3\}_2]$ (50 mg, 0.075 mmol) and CD_2Cl_2 (19 μ l, 0.30 mmol). ²H NMR (61 MHz, C_6H_6): δ 19.40 (s, Ru=CD₂).

- 1 S. D. Nguyen, L. K. Johnson, R. H. Grubbs and J. W. Ziller, *J. Am. Chem. Soc.,* 1992, **114**, 3974.
- 2 (*a*) P. Schwab, M. B. France, J. W. Ziller and R. H. Grubbs, *Angew. Chem., Int. Ed. Engl.,* 1995, **34**, 2039; (*b*) P. Schwab, R. H. Grubbs and J. W. Ziller, *J. Am. Chem. Soc.,* 1996, **118**, 100.
- 3 (*a*) H. B. Friedrich and J. R. Moss, *Adv. Organomet. Chem.,* 1991, **33**, 235; (*b*) H. Werner, *Angew. Chem., Int. Ed. Engl.,* 1983, **22**, 927;

*Chem. Commun***., 1997 1733**

(*c*) H. Haarman, J. M. Ernsting, M. Kranenburg, H. Kooijman, N. Veldman, A. L. Spek, P. W. N. M. van Leeuwen and K. Vrieze, *Organometallics,* 1997, **16**, 887; (*d*) M. Huser, M. Youinou and J. Osborn, *Angew. Chem., Int. Ed. Engl.,* 1989, **28**, 1386; (*e*) W. Herrmann, W. R. Thiel, C. Brossmer and K. Ofele, *J. Organomet. Chem.,* 1993, **461**, 51.

- 4 For examples of $M_2 + R_2CX_2 \rightarrow XM(\mu-CR_2)MX$, see; M. A. Ciriano, M. A. Tena and L. A. Oro, *J. Chem. Soc., Dalton Trans.,* 1992, 2123; G. E. Ball, W. R. Cullen, M. D. Fryzuk, B. R. James and S. J. Rettig, *Organometallics,* 1991, **10**, 3767; S. J. Young, B. Kellenberger, J. H. Reibenspies, S. E. Manning, O. P. Anderson and J. K. Stille, *J. Am. Chem. Soc.,* 1988, **110**, 5744.
- 5 Eqn. (2) is apparently the mechanism by which N_2 adds to $[Ru(H)₂(H₂)₂L₂]$ to give $[Ru(H)₂(N₂)₂L₂];$ S. Sabo-Etienne, M. Hernandez, G. Chung, B. Chaudret and A. Castel, *New J. Chem.,* 1994, **18**, 175; M. L. Christ, S. Sabo-Etienne, G. Chung and B. Chaudret, *Inorg. Chem.,* 1994, **33**, 5316.
- 6 B. Chaudret, G. Chung, O. Eisenstein, S. A. Jackson, F. J. Lahoz and J. A. López, *J. Am. Chem. Soc.*, 1991, 113, 2314; M. L. Christ, S. Sabo-Etienne and B. Chaudret, *Organometallics,*, 1994, **13**, 3800.
- 7 B. Chaudret and R. Poilblanc, *Organometallics,* 1985, **4**, 1722.

Received in Bloomington, IN, USA, 6th May 1997; 7/03097E