
        

1:1 (S )

his-metH

2:1 (N 
1,S )

100

75

50

25

0

S
pe

ci
es

(%
)

3 4 5 6 7 8 9 10
pH

3

21

1:1 (N 
1)

1:1 (N 
3)

1:1 (S )

his-metH

2:1 (N 
1,S )

100

75

50

25

0

S
pe

ci
es

(%
)

3

2
1

1:1 (N 
1)

0.05 0.5 5 50 500
t / h

1:1 (S )

his-metH

2:1 (N 
1,S )

100

75

50

25

0

S
pe

ci
es

(%
)

3

2

1

1:1 (N 
1)

1:1 (N 
3)

0.05 0.5 5 50 500
t / h

Intramolecular migration of [Pt(dien)]2+ (dien = 1,5-diamino-3-azapentane)
from sulfur to imidazole-N1 in histidylmethionine (his-metH)

Christian D. W. Fröhling and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

HPLC and NMR investigations of the kinetics of competitive
binding by neighbouring side chains in his-metH demon-
strate that at pH > 6 initial S coordination is followed by
slow isomerization to an imidazole-N1 bound complex
through a dinuclear intermediate [{Pt(dien)}2(his-metH-
1kN1:2kS)]4+

Pt binding by sulfur-containing bioligands such as l-methionine
(Hmet) is believed to be responsible for the concentration-
dependent nephrotoxicity of the widely used antitumor agent
cisplatin, cis-[PtCl2(NH3)2].1 Recent reports2,3 of the replace-
ment of a thioether S by guanine-N7 in the square-planar
coordination sphere of the model fragment [Pt(dien)]2+ have
also nourished the concept of a drug reservoir mechanism in
which initial protein binding may provide a route to DNA
platination.4 Interestingly, whereas 5A-GMP selectively dis-
places Hmet in [Pt(dien)(Hmet-kS)]2+, no reaction is observed3

between the likewise imidazole-containing amino acid
l-histidine (Hhis) and this complex, even after 3 days. In
contrast to this finding, we now report HPLC and NMR
evidence for his-N1 replacement of S-bound met, when both are
neighbouring peptide residues. 

Equimolar 0.8mm solutions of the three model dipeptides his-
metH, met-hisH and cyclo-his-met with [Pt(dien)(H2O)]2+ in
the range 3 < pH < 11 were incubated at 313 K for 14 days,
after which the reaction products were separated by reversed-
phase HPLC in the presence of 0.1% (v/v) pentafluoropropionic
acid as an ion-pairing agent.5,6 The distribution diagrams
presented for the [Pt(dien)(H2O)]2+/his-metH system in Figs.
1–3 were calculated using peak areas of the separated species at
the detection wavelength of 220nm and individual molar
absorbance coefficients obtained from a least-squares fit for the
chromatographic data collected over the full pH range. Products
were characterized by FAB mass spectrometry and multinuclear
(1H,195Pt) NMR spectroscopy.† Methionine kS coordination
leads to a pronounced downfield shift for the thioether d-CH3
protons from d 2.12 in the free dipeptide (pH* = 6.9) to d 2.53
in [Pt(dien)(his-metH-kS)]2+ 1, the dominant Pt complex in acid
solution. At pH > 6.1, the N1-bound complex, [Pt(dien)(his-
metH-kN1)]2+ 2, provides the major species; 2 is characterized

by its lack of a d-CH3 downfield shift, the equivalence of its
3J(1H–195Pt) values (19 Hz) for the imidazole H2 and H5

resonances and its typical 195Pt NMR chemical shift (d 22861)
for a square-planar N4 coordination sphere.7 In contrast to Hhis
itself with an N3/N1 binding ratio of 1.5 for [Pt(dien)]2+ at
pH* = 6.5,8 the kN3 complex appears to play a minor role for
his-metH in neutral aqueous solution, as is also the case for met-
hisH and cyclo-his-met. These latter dipeptides exhibit re-
spective crossover pH values of 5.9 and 3.8 for the change in
their preferred binding mode from kS to kN1. Inspection of
Fig. 1 indicates that a dinuclear complex [{Pt(dien)}2(his-
metH-1kN1 : 2kS)]4+ 3, characterized by its FABMS base peak
and two 195Pt resonances, reaches its maximum concentration at
the crossover pH value and a similar state of affairs was
established for met-hisH and cyclo-his-met.

Time-dependent HPLC studies of the [Pt(dien)(H2O)]2+–his-
metH reaction system at 313 K (Figs. 2 and 3) demonstrate that,
as expected,2–4,9 the kinetically favoured S-bound complex 1 is
formed rapidly and reaches a maximum concentration within
2–3 h. At the pH values considered (6.5, 9.4), 1 then slowly
isomerizes to the thermodynamically preferred kN1 complex 2
over a period of 500 h (Scheme 1). In Fig. 2, the dinuclear
complex 3 appears in chromatograms together with 2 for the

Fig. 1 Species distribution for the 1 : 1 [Pt(dien)(H2O)]2+–his-metH reaction
system as determined by HPLC for the range pH 3.0–10.5 (T = 313 K,
treaction = 14 d). Two minor species are omitted for clarity.

Fig. 2 Time-course of the 1 : 1 reaction between [Pt(dien)(H2O)]2+ and his-
metH at pH = 9.4 as monitored by reversed-phase HPLC (T = 313 K). A
minor species is omitted for clarity.

Fig. 3 Time-course of the 1 : 1 reaction between [Pt(dien)(H2O)]2+ and his-
metH at pH = 9.4 as monitored by reversed-phase HPLC (T = 313 K). A
minor species is omitted for clarity.
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first time after 2 h and exhibit a distribution curve with a time-
dependence similar to that of the N1-bound complex. Contrast-
ingly, 2 reaches a maximum concentration after ca. 30 h at pH
9.4 (Fig. 3) and can no longer be detected after 500 h. In
accordance with the findings of Sadler and coworkers,3 we also
confirmed10 that the individual amino acid Hhis plays only a
minor role in Pt binding when [Pt(dien)(H2O)]2+ is also allowed
to react with an equimolar solution of Hmet and Hhis for 14
days at 313 K in the range 3 < pH < 11. The S-bound complex
[Pt(dien)(Hmet-kS)]2+ is present over the whole experimental
range and exhibits a crossover pH (as dominant species) of 8.3
to a second N(amino)-bound Hmet complex. A two-step
intramolecular route involving the dinuclear intermediate
product 3, which would contrast to a normal five-coordinate
intermediate, can be discussed for the isomerization of 1 to 2.
Initial coordination of the kinetically favoured thioether S in 1
is the first step and blocks this binding site for further reactions.
Subsequently a second Pt(dien)2+ fragment is bound to the
thermodynamically preferred imidazole-N1 and the dinuclear
complex 3 is formed. For an equimolar ratio of Pt to ligand, this
complex dissociates to the mononuclear species 2 by cleavage
of the less stable Pt–S bond (Fig. 3). This final step is favoured
by the associated reduction in cation charge from +4 to +2. At
the higher pH value (9.4), the required dinuclear intermediate 3
can no longer be detected after completion of the conversion 1
? 2. In contrast, no intermediate could be established for the
intramolecular migration of Pt(dien)2+ from S to guanine-N7 in
S-guanosyl-l-homocysteine.2,11 This isomerization is more
rapid (t1

2
= 10 h at 295 K, pH < 6.5) than for the conversion 1

? 2, which exhibits a half-life (t1
2

ca. 40 h at 313K, pH = 6.5)
more comparable with that reported for the reaction of
[Pt(dien)(Hmet-kS)]2+ with 5A-GMP (t1

2
= 167 h at 300 K, pH*

= 7.0).3 Under pseudo-first-order conditions, the formation of
the dinuclear complex 3 exhibits a reaction rate of 1 3 1024 s21,
which is nearly an order of magnitude slower than that for 1
(k = 9 3 1024 s21) but similar to the rate constant of 2 (k = 8

3 1025 s21). Such values are, of course, not directly
comparable with intramolecular competition conditions (1 : 1),
because of pronounced changes in the final product distribution.
The observed acceleration in formation of 2 at pH 9.4 (Fig. 3)
could be due to faster coordination of a second Pt(dien)2+

fragment to the now non-protonated imidazole ring. Temporary
formation of 3 is then followed by disappearance of this
dinuclear complex which is not thermodynamically stable under
these conditions. 

The present investigation provides evidence for intramole-
cular Pt migration from a kinetically favoured met residue to a
thermodynamically preferred his side chain in peptides. Al-
though the conversion is relatively slow, it should be re-
membered that Pt has an in vivo half-life of several days after
administration of cisplatin.12 The presence of spatially neigh-
bouring his residues could, therefore, influence the reactivity of
met-bound Pt in DNA-binding proteins and should be con-
sidered in discussions on the mechanism of action of Pt
anticancer drugs. 

Footnotes and References

† 1H and 195Pt NMR data (D2O) with chemical shifts (d) relative to
respectively sodium 3-(trimethylsilyl)tetradeuteriopropionate (TSP,
d = 0.00) or sat. K2[PtCl4]–1mol dm23 NaCl (external, d = 21628) at
295K. pH* values were not corrected for deuterium isotope effects.

his-metH: 1H, d 8.06 (H2), 7.17 (H5), 4.29 (amet), 4.16 (ahis), 3.24 (bhis),
2.52 (gmet), 2.12 (dmet), 2.12, 1.98 (bmet) (pH* = 6.9). [Pt(dien)(his-metH-
kS)]2+ 1: FABMS, m/z 584 M+; 1H, d 8.68 (H2), 7.47 (H5), 4.61 (ahis), 4.46
(amet), 3.56 (bhis), 2.53 (dmet), 2.4, 2.22 (bmet), 2.85–3.3 (gmet, dien-CH2),
195Pt, d 23378 (pH* = 3.2). [Pt(dien)(his-metH-kN1)]2+ 2: FABMS, m/z
584 M+; 1H, d 7.88 [H2, 3J(1H–195Pt) 19 Hz], 6.88 [H5, 3J(1H–195Pt) 19 Hz],
4.26 (ahis), 3.75 (amet), 3.29 (bhis), 2.5 (gmet), 2.13 (dmet), 2.07, 1.94 (bmet),
2.85–3.3 (dien-CH2); 195Pt, d 22861 (pH* = 8.2). [{Pt(dien)}2(his-metH-
1kN1 : 2kS)]4+ 3: FABMS, m/z 879 M+; 1H, d 7.94 [H2, 3J(1H–195Pt) 19 Hz],
6.99 [H5, 3J(1H–195Pt) 19Hz], 4.68 (amet), 4.28 (ahis), 3.3 (bhis), 2.52 (dmet),
2.38, 2.18 (bmet), 2.8–3.3 (gmet, dien-CH2); 195Pt, d 22861, 23380
(pH* = 1.0).
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Scheme 1 Isomerization 1? 2
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