Intramolecular migration of [Pt(dien)]2+ **(dien = 1,5-diamino-3-azapentane) from sulfur to imidazole-N1 in histidylmethionine (his-metH)**

Christian D. W. Fröhling and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

HPLC and NMR investigations of the kinetics of competitive binding by neighbouring side chains in his-metH demonstrate that at pH > 6 initial S coordination is followed by slow isomerization to an imidazole-N1 bound complex through a dinuclear intermediate $[\{Pt(dien)\}_2$ (his-metH- $1 \textbf{k} N^{1}$ **:2k***S*)]⁴⁺

Pt binding by sulfur-containing bioligands such as L-methionine (Hmet) is believed to be responsible for the concentrationdependent nephrotoxicity of the widely used antitumor agent cisplatin, cis - $[PtCl₂(NH₃)₂]$.¹ Recent reports^{2,3} of the replacement of a thioether S by guanine- N^7 in the square-planar coordination sphere of the model fragment $[Pt(dien)]^{2+}$ have also nourished the concept of a drug reservoir mechanism in which initial protein binding may provide a route to DNA platination.⁴ Interestingly, whereas 5'-GMP selectively displaces Hmet in [Pt(dien)(Hmet-к*S*)]²⁺, no reaction is observed³ between the likewise imidazole-containing amino acid l-histidine (Hhis) and this complex, even after 3 days. In contrast to this finding, we now report HPLC and NMR evidence for his-*N*1 replacement of S-bound met, when both are neighbouring peptide residues.

Equimolar 0.8mm solutions of the three model dipeptides hismetH, met-hisH and *cyclo*-his-met with $[Pt(dien)(H₂O)]^{2+}$ in the range $3 < pH < 11$ were incubated at 313 K for 14 days, after which the reaction products were separated by reversedphase HPLC in the presence of 0.1% (v/v) pentafluoropropionic acid as an ion-pairing agent.5,6 The distribution diagrams presented for the $[Pt(dien)(H_2O)]^{2+}/$ his-metH system in Figs. 1–3 were calculated using peak areas of the separated species at the detection wavelength of 220nm and individual molar absorbance coefficients obtained from a least-squares fit for the chromatographic data collected over the full pH range. Products were characterized by FAB mass spectrometry and multinuclear (1H,195Pt) NMR spectroscopy.† Methionine k*S* coordination leads to a pronounced downfield shift for the thioether δ -CH₃ protons from δ 2.12 in the free dipeptide (pH* = 6.9) to δ 2.53 in $[Pt(dien)(his-metH- κ *S*)]²⁺1, the dominant Pt complex in acid$ solution. At $pH > 6.1$, the N¹-bound complex, [Pt(dien)(hismetH- kN ¹)]²⁺ **2**, provides the major species; **2** is characterized

Fig. 1 Species distribution for the 1:1 $[Pt(dien)(H_2O)]^{2+}$ –his-metH reaction system as determined by HPLC for the range pH $3.0-10.5$ ($T = 313$ K, $t_{\text{reaction}} = 14$ d). Two minor species are omitted for clarity.

Fig. 2 Time-course of the 1 : 1 reaction between $[Pt(dien)(H_2O)]^{2+}$ and hismetH at pH = 9.4 as monitored by reversed-phase HPLC $(T = 313 \text{ K})$. A minor species is omitted for clarity.

by its lack of a δ -CH₃ downfield shift, the equivalence of its $3J(1H-195Pt)$ values (19 Hz) for the imidazole H² and H⁵ resonances and its typical ¹⁹⁵Pt NMR chemical shift (δ -2861) for a square-planar \overline{N}_4 coordination sphere.⁷ In contrast to Hhis itself with an N^3/N^1 binding ratio of 1.5 for [Pt(dien)]²⁺ at $pH^* = 6.5$,⁸ the κN^3 complex appears to play a minor role for his-metH in neutral aqueous solution, as is also the case for methisH and *cyclo*-his-met. These latter dipeptides exhibit respective crossover pH values of 5.9 and 3.8 for the change in their preferred binding mode from k*S* to k*N*1. Inspection of Fig. 1 indicates that a dinuclear complex $[\{Pt(dien)\}_2(his$ metH-1 κ *N*¹ : 2 κ *S*)]⁴⁺ **3**, characterized by its FABMS base peak and two 195Pt resonances, reaches its maximum concentration at the crossover pH value and a similar state of affairs was established for met-hisH and *cyclo*-his-met.

Time-dependent HPLC studies of the $[Pt(dien)(H_2O)]^{2+}$ -hismetH reaction system at 313 K (Figs. 2 and 3) demonstrate that, as expected,^{2-4,9} the kinetically favoured S-bound complex 1 is formed rapidly and reaches a maximum concentration within 2–3 h. At the pH values considered (6.5, 9.4), **1** then slowly isomerizes to the thermodynamically preferred k*N*¹ complex **2** over a period of 500 h (Scheme 1). In Fig. 2, the dinuclear complex **3** appears in chromatograms together with **2** for the

Fig. 3 Time-course of the 1:1 reaction between $[Pt(dien)(H_2O)]^{2+}$ and hismetH at $pH = 9.4$ as monitored by reversed-phase HPLC ($T = 313$ K). A minor species is omitted for clarity.

*Chem. Commun***., 1997 1737**

Scheme 1 Isomerization $1 \rightarrow 2$

first time after 2 h and exhibit a distribution curve with a timedependence similar to that of the $N¹$ -bound complex. Contrastingly, **2** reaches a maximum concentration after *ca*. 30 h at pH 9.4 (Fig. 3) and can no longer be detected after 500 h. In accordance with the findings of Sadler and coworkers,³ we also confirmed10 that the individual amino acid Hhis plays only a minor role in Pt binding when $[Pt(dien)(H_2O)]^{2+}$ is also allowed to react with an equimolar solution of Hmet and Hhis for 14 days at 313 K in the range $3 < pH < 11$. The S-bound complex $[Pt(dien)(Hmet-KS)]^{2+}$ is present over the whole experimental range and exhibits a crossover pH (as dominant species) of 8.3 to a second N(amino)-bound Hmet complex. A two-step intramolecular route involving the dinuclear intermediate product **3**, which would contrast to a normal five-coordinate intermediate, can be discussed for the isomerization of **1** to **2**. Initial coordination of the kinetically favoured thioether S in **1** is the first step and blocks this binding site for further reactions. Subsequently a second $Pt(dien)^{2+}$ fragment is bound to the thermodynamically preferred imidazole-N1 and the dinuclear complex **3** is formed. For an equimolar ratio of Pt to ligand, this complex dissociates to the mononuclear species **2** by cleavage of the less stable Pt–S bond (Fig. 3). This final step is favoured by the associated reduction in cation charge from $+4$ to $+2$. At the higher pH value (9.4), the required dinuclear intermediate **3** can no longer be detected after completion of the conversion **1** \rightarrow 2. In contrast, no intermediate could be established for the intramolecular migration of Pt(dien)²⁺ from S to guanine-N⁷ in S-guanosyl-L-homocysteine.^{2,11} This isomerization is more rapid ($t_{\frac{1}{2}}$ = 10 h at 295 K, pH < 6.5) than for the conversion **1** \rightarrow 2, which exhibits a half-life ($t_{\frac{1}{2}}$ *ca.* 40 h at 313K, pH = 6.5) more comparable with that reported for the reaction of $[Pt(dien)(\overline{H}met-\kappa S)]^{2+}$ with 5'-GMP ($t_1 = 167$ h at 300 K, pH^{*} = 7.0).3 Under pseudo-first-order conditions, the formation of the dinuclear complex **3** exhibits a reaction rate of 1×10^{-4} s⁻¹. which is nearly an order of magnitude slower than that for **1** $(k = 9 \times 10^{-4} \text{ s}^{-1})$ but similar to the rate constant of 2 ($k = 8$)

 \times 10⁻⁵ s⁻¹). Such values are, of course, not directly comparable with intramolecular competition conditions (1 : 1), because of pronounced changes in the final product distribution. The observed acceleration in formation of **2** at pH 9.4 (Fig. 3) could be due to faster coordination of a second $Pt(dien)^{2+}$ fragment to the now non-protonated imidazole ring. Temporary formation of **3** is then followed by disappearance of this dinuclear complex which is not thermodynamically stable under these conditions.

The present investigation provides evidence for intramolecular Pt migration from a kinetically favoured met residue to a thermodynamically preferred his side chain in peptides. Although the conversion is relatively slow, it should be remembered that Pt has an *in vivo* half-life of several days after administration of cisplatin.¹² The presence of spatially neighbouring his residues could, therefore, influence the reactivity of met-bound Pt in DNA-binding proteins and should be considered in discussions on the mechanism of action of Pt anticancer drugs.

Footnotes and References

 \dagger ¹H and ¹⁹⁵Pt NMR data (D₂O) with chemical shifts (δ) relative to respectively sodium 3-(trimethylsilyl)tetradeuteriopropionate (TSP, δ = 0.00) or sat. K₂[PtCl₄]–1mol dm⁻³ NaCl (external, δ = -1628) at 295K. pH* values were not corrected for deuterium isotope effects.

his-metH: ¹H, δ 8.06 (H²), 7.17 (H⁵), 4.29 (α_{met}), 4.16 (α_{his}), 3.24 (β_{his}), 2.52 (γ_{met}), 2.12 (δ_{met}), 2.12, 1.98 (β_{met}) (pH* = 6.9). [Pt(dien)(his-metHk*S*)]²⁺ **1**: FABMS, *m*/*z* 584 M⁺; ¹H, δ 8.68 (H²), 7.47 (H⁵), 4.61 (α_{his}), 4.46 (α_{met}), 3.56 (β_{his}), 2.53 (δ_{met}), 2.4, 2.22 (β_{met}), 2.85–3.3 (γ_{met} , dien-CH₂), 195 Pt, δ -3378 (pH* = 3.2). [Pt(dien)(his-metH-k*N*¹)]²⁺ **2**: FABMS, *m*/*z* 584 M+; 1H, d 7.88 [H2, 3*J*(1H–195Pt) 19 Hz], 6.88 [H5, 3*J*(1H–195Pt) 19 Hz], 4.26 ($\alpha_{\rm his}$), 3.75 ($\alpha_{\rm met}$), 3.29 ($\beta_{\rm his}$), 2.5 ($\gamma_{\rm met}$), 2.13 ($\delta_{\rm met}$), 2.07, 1.94 ($\beta_{\rm met}$), 2.85–3.3 (dien-CH₂); ¹⁹⁵Pt, δ – 2861 (pH^{*} = 8.2). [{Pt(dien)}₂(his-metH- $1 \text{k}N^1$: $2 \text{k}S$]⁴⁺ 3: FABMS, m/z 879 M⁺; ¹H, δ 7.94 [H², ³*J*(¹H–¹⁹⁵Pt) 19 Hz], 6.99 [H⁵, $3J($ ¹H_–195Pt) 19Hz], 4.68 (α_{met}), 4.28 (α_{his}), 3.3 (β_{his}), 2.52 (δ_{met}), 2.38, 2.18 (β_{met}), 2.8–3.3 (γ_{met} , dien-CH₂); ¹⁹⁵Pt, δ –2861, –3380 $(pH^* = 1.0)$.

- 1 E. L. M. Lempers and J. Reedijk, *Adv. Inorg. Chem.*, 1991, **37**, 175.
- 2 S. S. G. E. van Boom and J. Reedijk, *J. Chem. Soc., Chem. Commun.*, 1993, 1397.
- 3 K. J. Barnham, M. I. Djuran, P. del Socorro Murdoch and P. J. Sadler, *J. Chem. Soc., Chem. Commun.*, 1994, 721.
- 4 K. J. Barnham, M. I. Djuran, P. del Socorro Murdoch, J. D. Ranford and P. J. Sadler, *J. Chem. Soc., Dalton Trans.*, 1995, 3721.
- 5 A. F. M. Siebert, C. D. W. Fröhling and W. S. Sheldrick, J. Chromatogr. *A*, 1997, **761**, 115.
- 6 A. F. M. Siebert and W. S. Sheldrick, *J. Chem. Soc., Dalton Trans.*, 1997, 385.
- 7 T. G. Appleton, J. W. Connor and J. R. Hall, *Inorg. Chem.*, 1988, **27**, 130.
- 8 T. G. Appleton, F. J. Pesch, M. Wienken, S. Menzer and B. Lippert, *Inorg. Chem.*, 1992, **31**, 4410.
- 9 T. G. Appleton, J. W. Connor, J. R. Hall and P. D. Prenzler, *Inorg. Chem.*, 1989, **28**, 2030.
- 10 D. A. Wolters, Diploma thesis, Ruhr-Universität, Bochum, 1995.
- 11 S. S. G. E. van Boom, Dissertation, University of Leiden, 1995.
- 12 A. W. Prestayko, in *Cisplatin, Current status and New Developments*, ed. A. W. Prestayko, S. T. Crooke and S. K. Carter, Academic Press, London, 1980, p. 2.

Received in Basel, Switzerland, 28th April 1997; 7/02904G