Remarkable 'edge' ligation of a triphosphacyclopentenyl ring system. Synthesis, crystal and molecular structure of $[Ni(\eta^{5}-P_{3}C_{2}Bu^{t}_{2})\{\eta^{2}-P_{3}C_{2}Bu^{t}_{2}CH(SiMe_{3})_{2}Me\}]$

Vinicius Caliman, Peter B. Hitchcock and John F. Nixon*

School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, UK BN1 9QJ

In the nickel(II) complex $[Ni(\eta^5-P_3C_2Bu_2^t)(\eta^2-P_3C_2Bu_2^tCH$ triphosphacyclopentenyl $(SiMe_3)_2Me$] the ring $P_3C_2Bu_2CH(SiMe_3)_2Me$ is unexpectedly coordinated to the metal exclusively via the two adjacent saturated ring phosphorus atoms, rather than via the 2-phosphaallyl fragment.

Very recently1 we reported the synthesis of the lithium triphosphacyclopentenyl salt $\text{LiP}_3\text{C}_2\text{But}_2\text{RR'}$ **1** [R = (Me_3Si)_2-

CH, R' = Me] by treatment of the 1,2,4-triphosphole $P_3C_2But_2R 2^2$ with LiMe. The ³¹P{¹H} NMR spectrum of 1 can be readily interpreted¹ in terms of the η^3 -2-phosphaallylic structure [Fig. 1(a)]. Although several ligation modes of the triphosphacyclopentenyl ring anion in 1 towards transition metals can be envisaged, it was anticipated that η^3 -ligation via the 2-phosphaallyl fragment would be most likely in complexes of nickel(II) halides, however, unexpectedly a completely different type of ligation of the ring to the metal centre occurs as discussed below.

Treatment of Li[P₃C₂But₂CH(SiMe₃)₂Me] with 1 equiv. of NiBr₂ in diethyl ether at -78 °C affords a dark green solution which on further treatment with 1 equiv. of $Li[P_3C_2Bu_2]$ affords the purple complex $[Ni(\eta^5-P_3C_2But_2){P_3C_2But_2CH}-(SiMe_3)_2Me\}]$ 3. Scheme 1 shows the likely steps of the synthesis of 3 via the postulated intermediate complex 4 which could not be isolated on account of its air- and moisturesensitivity. Complex 3 was obtained in 45% yield after chromatography and was fully characterised by mass spectrometry, ³¹P{¹H} and ¹H NMR spectroscopy.[†] Its structure, which was confirmed by a single-crystal X-ray diffraction study,[±] surprisingly proved not to involve the expected η^5 : η^3 ligation of the two five-membered ring systems which is well known for the related cyclopentadienyl cyclopentenyl nickel(II) complex $[Ni(\eta^5-C_5H_5)(\eta^3-C_5H_7)]$ 5.

Fig. 1 ³¹P{¹H} NMR spectra of (a) 1 and (b) 3

Scheme 1

Chem. Commun., 1997 1739

Fig. 2 Molecular structure of 3 with atomic numbering scheme

The ³¹P{¹H} NMR spectrum of **3** [Fig. 1(*b*)] exhibits a pattern of lines expected for an [ABM₂NX] spin system. The η^5 -P₃C₂Bu¹₂ ring gives rise to signals corresponding to P^M and P^N (δ 145.8 and 149.7, respectively) with the expected magnitude of the ²*J*_{PP} coupling constant for this type of aromatic ring system.³⁻⁶ The pattern of lines observed for the P₃C₂Bu¹₂CH(SiMe₃)₂Me ring in **3** is similar to that exhibited for the free anion in **1**; the P^A and P^B resonances of the two sp³-hydridised phosphorus showing characteristic high-field resonances (δ P^A -74.5; δ P^B -58.3) with a typically large one bond ¹*J*_{PAPB} coupling constants (251.3 Hz), whereas P^x exhibits a typical chemical shift for an sp²-hybridised phosphorus (δ P^x 266.2), suggesting structure **3a**.

A single-crystal X-ray diffraction study on **3** unexpectedly revealed the remarkable molecular structure **3b** (Fig. 2), in which the 2-phosphaallylic fragment of the P₃C₂Bu¹₂CH-(SiMe₃)₂Me ring is not involved in bonding to the nickel, which is in fact solely ligated *via* the P(1) and P(2) lone pair electrons of the two saturated phosphorus centres. The two rings in **3** are both planar, with a dihedral angle of 18°, and structural data are summarised in Fig. 3. The η^5 -ligated P₃C₂Bu¹₂ ring exhibits bond lengths and angles very similar to several related transition-metal complexes containing this triphospholyl anion.^{3–6} The triphosphacyclopentenyl ring P₃C₂Bu¹₂CH(Si-Me₃)₂Me in **3** is attached to the Ni^{II} *via* two P–Ni single bonds [P(1)–Ni 2.201(2), P(2)–Ni 2.155(2) Å] and the P(1)–Ni–P(2)

Fig. 3 Important structural features from 3a. Distances in (Å) and angles in (°).

To our knowledge, the bonding exhibited by the triphosphacyclopentenyl ring in 3 is unprecedented. Scherer and coworkers7 recently reported the synthesis and molecular structure of the complex $[(\eta^5-C_5Me_5)Fe(\mu-\eta^5:\eta^2-P_5)Ir(\eta^5-\eta^2-P_5)Fe(\mu-\eta^5:\eta^2-P_5)]$ $C_5Me_5)(CO)$ 6, in which there is a η^2 -'edge' coordination of the 16-electron $[Ir(CO)(\eta^5-C_5Me_5)]$ fragment to two adjacent phosphorus atoms in the pentaphospholyl ring. However, the η^2 -coordination of the P₅ ring in **6** is completely different to that described for complex 3 above, since it involves an unsaturated P-P ring linkage. It is therefore 'alkene-like' in its ligating mode towards the Ir^I centre, whereas in 3 the two saturated sp³hybridised phosphorus atoms must presumably utilise their lone pair electrons in bonding to Ni^{II}. These bonding differences are clearly reflected in the very different P-P bond lengths observed within the η^5 -P₅: η^2 -P₅ and η^2 -P₃C₂But₂CH(SiMe₃)₂Me rings in 3 and 6. There is a significant lengthening (ca. 0.2 Å) of the P–P distance in 6 [P(1)– $\tilde{P}(2) 2.359(2)$ Å], compared with that of the parent complex $[Fe(\eta^5-C_5Me_5)(\eta^5-P_5)]$,⁷ whereas no such elongation results on n²-coordination of the P₃C₂But₂CH(Si- $Me_{3}_{2}Me$ ring in 3, and a normal P(1)-P(2) single bond distances [2.134(2) Å] is observed.

We thank CNPq (Brazil) for a studentship (for V. C.) and EPSRC for their continuing support for phosphaalkyne chemistry at Sussex.

Footnotes and References

* E-mail: j.nixon@sussex.ac.uk

† Complex **3**. Satisfactory elemental analyses were obtained. ³¹P{¹H} NMR (101.3 MHz, C₆D₆, 25 °C): δ 266.2 (dd, P^x, ²J_Px_PA 33.8, ²J_Px_PB 42.2 Hz), 149.7 (dd P^N, ²J_PN_PM 48.4, ²J_PN_PA 7.2 Hz), 145.8 (dt, P^M, ²J_PM_PN 48.4, ²J_PM_PB 9.2 Hz), -58.3 (ddd, P^B, ¹J_PB_PX 251.3, ²J_PB_PM 42.2, ²J_PB_PM 9.2 Hz), -74.5 (ddd, P^A, ¹J_PA_PB 251.3, ²J_PA_PX 33.8, ²J_PA_PN 7.2 Hz). ¹H NMR (250.2 MHz, CDCl₃, 25 °C): δ -0.16 [s, 9 H, Si(CH₃)₃], 0.44 [s, 9 H, Si(CH₃)₃], 0.83 (dt, 3 H, PCH₃, ²J_{HP} 6.55, ³J_{HP} 1.37 Hz), 1.10 [s, 9 H, C(CH₃)₃, 1.50 [d, 9 H, C(CH₃)₃, 4J_{HP} 1.63 Hz], 1.52 [d, 9 H, C(CH₃)₃, 4J_{HP} 1.48 Hz], 1.55 [s, 9 H, C(CH₃)₃], 2.02 (dd, 1 H, CH, ²J_{HP} 10.54, ³J_{HP} 5.65 Hz). Mass spectrum (EI) for **3**: *m*/z: 694 [Ni(P₃C₂Buⁱ₂){P₃C₂Buⁱ₂C(F(SiMe₃)₂Me]]⁺ (22%), 535 [Ni(P₃C₂Buⁱ₂)(P₃C₂Buⁱ₂Me)]⁺, 405 [P₃C₂Buⁱ₂)(P₃C₂Buⁱ₂)]⁺, 73 [SiMe₃]⁺.

‡ *Crystal data* for **3**: C₂₈H₅₈NiP₆Si₂, M = 695.45, monoclinic, space group $P2_1/c$ (no. 14), a = 10.782(3), b = 19.243(4), c = 19.319(7) Å, $\beta = 94.75(2)^\circ$, U = 3995(2) Å³, Z = 4, $D_c = 1.16$ g cm⁻³, F(000) = 1488. Monochromated Mo-Kα radiation $\lambda = 0.710.69$ Å, T = 173(2) K. Data were collected on an Enraf-Nonius CAD 4 diffractometer using a crystal of $0.40 \times 0.40 \times 0.20$ mm. A total of 7010 unique reflections were measured for $2 < \theta < 25^\circ$ of which 5120 had $I > 2\sigma(I)$. The structure was solved by direct methods using SHELXS-86 and refined on F^2 with all non-H atoms anisotropic using SHELXL-93. H atoms were included in riding mode with $U_{iso} = 1.2 U_{eq}(C)$ or $1.5 U_{eq}(C)$ for methyl groups. The final residuals were $R_1 = 0.058$ [for $I > 2\sigma(I)$] and $wR_2 = 0.158$ for all data. CCDC 182/553.

- 1 V. Caliman, P. B. Hitchcock, J. F. Nixon and N. Sakarya, Bull. Soc. Chim. Belg., 1996, 105, 675.
- 2 V. Caliman, P. B. Hitchcock and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1995, 1661.
- 3 R. Bartsch, P. B. Hitchcock and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1987, 1146.
- 4 J. F. Nixon, Chem. Rev., 1988, 88, 1327 and references therein.
- 5 J. F. Nixon, Chem. Soc. Rev., 1995, 319 and references therein.
- 6 J. F. Nixon, Coord. Chem. Rev., 1995, 145, 201 and references therein.
- 7 M. Detzel, G. Friedrich, O. J. Scherer and G. Wolmershausen, Angew. Chem., Int. Ed. Engl., 1995, 34, 1321.

Received in Cambridge, UK, 2nd June 1997; 7/03797J