The free-radical addition of phenyl trichloromethyl selenide to alkenes: a new method for the regioselective carboxylation of alkenes

Thomas G. Back* and Kazimierz Minksztym

Department of Chemistry, University of Calgary, Calgary, AB, Canada, T2N 1N4

The free-radical addition of phenyl trichloromethyl selenide to alkenes affords 2-phenylseleno-1-trichloromethylalkanes, which can be converted into α , β -unsaturated carboxylic acids or amides by base-promoted dehydrochlorination, followed by [2,3]sigmatropic rearrangement of the corresponding selenoxides in the presence of water or diethylamine, respectively.

Free-radical 1,2-additions of selenium compounds of general structure PhSeX to alkenes and alkynes1 provide a synthetically useful means for introducing the versatile phenylseleno group, as well as an additional functionality [e.g. $X = SO_2Ar$,² SePh,³ C(=O)R,⁴ SC(=O)Ph,⁵ and CHZ_2 ,⁶ where Z is an electron-withdrawing group] into the substrates. Free-radical additions of perhaloalkanes such as bromotrichloromethane are also well known.7 Moreover, PhSe group transfers to alkyl radicals occur with rates comparable to those of bromine atom transfers,⁸ suggesting that phenyl trichloromethyl selenide 19 should undergo free-radical additions similar to those of bromotrichloromethane. We now report the novel photo-initiated or thermally initiated radical additions of 1 to alkenes, followed by some illustrative further transformations of the trichloromethyl and phenylseleno moieties that permit the overall conversion of the alkene into the corresponding α,β -unsaturated carboxylic acid (or amide), as shown in Scheme 1. Other methods for the carboxylation of alkenes generally require the presence of

Scheme 2 Reagents and conditions: i, 50% NaOH–H₂O, Adogen 464[®], O₂, 15–20 $^{\circ}C$

Scheme 3 Reagents and conditions: i, hv or heat, AIBN; ii, Bu'OK–THF, -30 or 10 °C; iii, $30\% \text{ H}_2\text{O}_2 \text{ H}_2\text{O}$, -30 °C; iv, MCPBA, CH_2Cl_2 , -30 °C, then Et_2NH , room temp.

activating substituents to permit deprotonation of the alkene, or an existing functionality (*e.g.* halide, stannane) that provides a site for metallation, followed by reaction with carbon dioxide or

Table 1 Addition of 1 to alkenes	1
----------------------------------	---

Alkene	Product	Yield (%)	t/h
C ₆ H ₁₃	C ₆ H ₁₃ C ₆ H ₁₃ 2a	88 62 ^b 78 ^c	12 60 25
But	Bu ^t CCl ₃	75	13
EtO	EtO EtO 2c	81	5
HO	SePh HOCCl ₃	65	13
BzO	2d SePh BzOCCl ₃ 2e	69	12
Bu Bu	PhSe CCl ₃ Bu Bu 2f	60 ^{<i>d</i>}	19
Bu	2f	54 ^{<i>e</i>}	12
AcO	SePh AcO	43	17
\bigcirc	2g CCl ₃ SePh 2h	63 ^f	24
	CCl ₃	87	19
	SePh 2i		

^{*a*} All reactions were performed neat using photo-initiation and 5 equiv. of the alkene unless otherwise noted; isolated yields are reported. ^{*b*} Only 1.5 equiv. of the alkene was used. ^{*c*} Performed in benzene at 80 °C with 10 mol% of AIBN. ^{*d*} The diastereomeric ratio was 3.8:1, as determined by NMR integration. ^{*e*} The diastereomeric ratio was 4.2:1, as determined by NMR integration. ^{*f*} The *cis:trans* ratio was 1:1.8, as determined by NMR integration.

one of its synthetic equivalents.¹⁰ The present method permits the use of unactivated olefins.

Selenide 1 was conveniently prepared by a new method from the base-catalysed reaction of diphenyl diselenide with CHCl₃ (Scheme 2). Thus, a mixture of the diselenide, a catalytic amount of Adogen 464® (methyltrialkylammonium chloride), 50% aqueous NaOH and CHCl₃ was stirred for 9 h at 15-20 °C, while air was bubbled through the reaction mixture to recycle the byproduct selenolate (PhSe⁻). The product was isolated in 77% yield by flash chromatography.

The free-radical 1,2-addition of 1 to various alkenes to give 2 was then effected as shown in Scheme 3 and Table 1. Monosubstituted alkenes afforded adducts 2a-e with only traces (<5%) of their corresponding regioisomers, as indicated by NMR analysis. Both cis- and trans-dec-5-ene produced 2f as the same ca. 4:1 mixture of diastereomers. Cyclohexene furnished a mixture of cis and trans-adducts 2h in a ratio of 1:1.8. Thus, the additions are highly regioselective, but only moderately stereoselective. β -Pinene underwent ring-opening during the addition to afford the rearranged 1,6-adduct 2i. In general, the reactions were performed by irradiation of the reaction mixture, either neat or in benzene solution, containing an excess (usually five-fold) of the alkene with a 300 W incandescent lamp. The use of a smaller excess of the alkene resulted in lower yields and required longer reaction times. The reaction was also performed in the case of 2a in benzene at

Scheme 5 Reagents and conditions: i, H₂O; ii, Et₂NH, then H₂O

Table 2 Preparation of allylic selenides 3, carboxylic acids 4 and amides 5 from 2

Adduct	R ¹ R ²		Isolated yields (%)			
		R ³	3	4	5	
2a	Н	C ₆ H ₁₃	Н	92	91	73
2b	Н	But	Н	90	84	50
2f	Bun	Bu ⁿ	Н	92	81	59
2g	-[CH ₂]	4-	Н	86	60	50

80 °C in the presence of 10 mol% of the radical initiator AIBN. These results suggest a free-radical chain process in which cleavage of the Se-CCl₃ bond initiates the reaction, followed by addition of the trichloromethyl radical to the less substituted alkenic atom, and finally transfer of the PhSe group from 1 to the resulting 2-alkyl radical (Scheme 4).

Several of the adducts 2 were then transformed into allylic selenides 3 by dehydrochlorination with KOBu^t in THF at 30 °C (except for **3f**, which required 6 h at 10 °C), and finally into α,β -unsaturated carboxylic acids **4** by oxidation and *in situ* [2,3]sigmatropic rearrangement (Scheme 3) of the resulting selenoxides.¹¹ Products 4a, 4b and 4f were obtained as the E-isomers with high stereoselectivity. When Et₂NH was present during the latter step, the corresponding diethylamides were obtained instead. These results are shown in Table 2. Presumably, the sigmatropic rearrangement produces 6 initially, which then hydrolyses to the carboxylic acid 4 (Scheme 5). On the other hand, 6 reacts preferentially by aminolysis in the presence of diethylamine to afford the amide 5 instead of 4 after aqueous workup.

All new compounds reported here gave IR, ¹H NMR, ¹³C NMR and low and high resolution mass spectra consistent with their structures.

These results demonstrate that the free-radical additions of readily available selenide 1 to alkenes occur efficiently and with high regioselectivity. Moreover, when the above process was used in conjunction with base-promoted dehydrochlorination and [2,3]sigmatropic rearrangement of the corresponding selenoxides, a novel method for the overall regioselective carboxylation of alkenes was achieved.

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support.

Footnote and References

* E-mail: tgback@acs.ucalgary.ca

- 1 T. G. Back, in Organoselenium Chemistry, ed. D. Liotta, Wiley, New York, 1987, ch. 7; C. Paulmier, Selenium Reagents and Intermediates in Organic Synthesis, Pergamon, Oxford, 1986, pp. 214-218.
- 2 T. G. Back and S. Collins, J. Org. Chem., 1981, 46, 3249; T. G. Back, S. Collins and R. G. Kerr, J. Org. Chem., 1983, 48, 3077; R. A. Gancarz and J. L. Kice, J. Org. Chem., 1981, **46**, 4899; T. Miura and M. Kobayashi, J. Chem. Soc., Chem. Commun., 1982, 438.
- 3 T. G. Back and M. V. Krishna, J. Org. Chem., 1988, 53, 2533; A. Ogawa, H. Yokoyama, K. Yokoyama, T. Masawaki, N. Kambe and N. Sonoda, J. Org. Chem., 1991, 56, 5721.
- 4 D. L. Boger and R. J. Mathvink, J. Org. Chem., 1989, 54, 1777.
 5 T. Toru, T. Seko, E. Maekawa and Y. Ueno, J. Chem. Soc., Perkin Trans. 1, 1988, 575.
- 6 J. H. Byers and G. C. Lane, J. Org. Chem., 1993, 58, 3355; J. H. Byers, J. G. Thissell and M. A. Thomas, Tetrahedron Lett., 1995, 36, 6403; D. P. Curran, E. Eichenberger, M. Collis, M. G. Roepel and G. Thoma, J. Am. Chem. Soc., 1994, 116, 4279; T. G. Back, P. L. Gladstone and M. Parvez, J. Org. Chem., 1996, 61, 3806; P. Renaud and S. Abazi, Synthesis, 1996, 253.
- 7 C. Walling and E. S. Huyser, Org. React., 1963, 13, 91.
- 8 D. P. Curran, A. A. Martin-Esker, S.-B. Ko and M. Newcomb, J. Org. Chem., 1993, 58, 4691.
- 9 D. H. R. Barton, T. Okano and S. I. Parekh, Tetrahedron, 1991, 47, 1823; L. M. Yagupol'skii and N. V. Kondratenko, Russ. J. Gen. Chem., 1967, 37, 1686.
- 10 R. C. Larock, Comprehensive Organic Transformations, VCH, New York, 1989, pp. 185-188; R. P. A. Sneeden, in The Chemistry of Carboxylic Acids and Esters, ed. S. Patai, Wiley, London, 1969, ch.
- 11 H. J. Reich, in Organoselenium Chemistry, ed. D. Liotta, Wiley, New York, 1987, ch. 8.

Received in Corvallis, OR, USA, 13th June 1997; 7/04153E