The free-radical addition of phenyl trichloromethyl selenide to alkenes: a new method for the regioselective carboxylation of alkenes

Thomas G. Back* and Kazimierz Minksztym

Department of Chemistry, University of Calgary, Calgary, AB, Canada, T2N 1N4

The free-radical addition of phenyl trichloromethyl selenide to alkenes affords 2-phenylseleno-1-trichloromethylalkanes, which can be converted into α , β -unsaturated carboxylic **acids or amides by base-promoted dehydrochlorination, followed by [2,3]sigmatropic rearrangement of the corresponding selenoxides in the presence of water or diethylamine, respectively.**

Free-radical 1,2-additions of selenium compounds of general structure PhSeX to alkenes and alkynes¹ provide a synthetically useful means for introducing the versatile phenylseleno group, as well as an additional functionality $[e.g. \bar{X} = SO_2Ar^2 \bar{S}ePh^3]$ $C(=O)R$,⁴ SC(=O)Ph,⁵ and CHZ₂,⁶ where Z is an electronwithdrawing group] into the substrates. Free-radical additions of perhaloalkanes such as bromotrichloromethane are also well known.7 Moreover, PhSe group transfers to alkyl radicals occur with rates comparable to those of bromine atom transfers,⁸ suggesting that phenyl trichloromethyl selenide **1**9 should undergo free-radical additions similar to those of bromotrichloromethane. We now report the novel photo-initiated or thermally initiated radical additions of **1** to alkenes, followed by some illustrative further transformations of the trichloromethyl and phenylseleno moieties that permit the overall conversion of the alkene into the corresponding α, β -unsaturated carboxylic acid (or amide), as shown in Scheme 1. Other methods for the carboxylation of alkenes generally require the presence of

Scheme 2 *Reagents and conditions*: i, 50% NaOH–H₂O, Adogen 464[®], O₂, $15-20 °C$

Scheme 3 Reagents and conditions: i, hv or heat, AIBN; ii, Bu^tOK-THF, -30 or 10 °C; iii, 30% H₂O₂ H₂O, -30 °C; iv, MCPBA, CH₂Cl₂, -30 °C, then $Et₂NH$, room temp.

activating substituents to permit deprotonation of the alkene, or an existing functionality (*e.g.* halide, stannane) that provides a site for metallation, followed by reaction with carbon dioxide or

Alkene	Product	Yield (%)	t/\hbar	
C_6H_{13}	SePh CCI ₃ C_6H_{13} 2a	88 62 ^b 78 ^c	12 60 25	
Bu ^t	SePh CCI ₃ But	${\bf 75}$	13	
EtO [®]	2 _b SePh CCI ₃ EtO 2c	81	5	
HO.	SePh HO. CCI ₃	65	13	
BzO	2d SePh BzO. CCI ₃ 2e	69	12	
Bu Bu	PhSe CCI ₃ Bu Bu 2f	60 ^d	19	
Bu. Bu	2f	54 ^e	12	
AcO	SePh CCI ₃ AcO [®]	43	17	
	2g CCI ₃ SePh 2 _h	63 ^f	24	
	CCI ₃ SePh	87	19	
	2i			

a All reactions were performed neat using photo-initiation and 5 equiv. of the alkene unless otherwise noted; isolated yields are reported. *b* Only 1.5 equiv. of the alkene was used. *c* Performed in benzene at 80 °C with 10 mol% of AIBN. *d* The diastereomeric ratio was $3.8:1$, as determined by NMR integration. *e* The diastereomeric ratio was 4.2 : 1, as determined by NMR integration. *f* The *cis*: *trans* ratio was 1 : 1.8, as determined by NMR integration.

one of its synthetic equivalents.10 The present method permits the use of unactivated olefins.

Selenide **1** was conveniently prepared by a new method from the base-catalysed reaction of diphenyl diselenide with $CHCl₃$ (Scheme 2). Thus, a mixture of the diselenide, a catalytic amount of Adogen 464® (methyltrialkylammonium chloride), 50% aqueous NaOH and CHCl₃ was stirred for 9 h at 15–20 °C, while air was bubbled through the reaction mixture to recycle the byproduct selenolate ($PhSe^-$). The product was isolated in 77% yield by flash chromatography.

The free-radical 1,2-addition of **1** to various alkenes to give **2** was then effected as shown in Scheme 3 and Table 1. Monosubstituted alkenes afforded adducts **2a**–**e** with only traces $(<5\%)$ of their corresponding regioisomers, as indicated by NMR analysis. Both *cis*- and *trans*-dec-5-ene produced **2f** as the same *ca*. 4 : 1 mixture of diastereomers. Cyclohexene furnished a mixture of *cis* and *trans*-adducts **2h** in a ratio of 1 : 1.8. Thus, the additions are highly regioselective, but only moderately stereoselective. β -Pinene underwent ring-opening during the addition to afford the rearranged 1,6-adduct **2i**. In general, the reactions were performed by irradiation of the reaction mixture, either neat or in benzene solution, containing an excess (usually five-fold) of the alkene with a 300 W incandescent lamp. The use of a smaller excess of the alkene resulted in lower yields and required longer reaction times. The reaction was also performed in the case of **2a** in benzene at

Scheme 5 *Reagents and conditions*: i, H_2O ; ii, Et_2NH , then H_2O

Table 2 Preparation of allylic selenides **3**, carboxylic acids **4** and amides **5** from **2**

Adduct	R^2 \mathbb{R}^1		R^3	Isolated yields $(\%)$		
				3		5
2a	Н	C_6H_{13}	Н	92	91	73
2 _b	Н	But	Н	90	84	50
2f	Bu ⁿ	Bu ⁿ	Н	92	81	59
2g	$-[CH2]4$		Н	86	60	50

80 °C in the presence of 10 mol% of the radical initiator AIBN. These results suggest a free-radical chain process in which cleavage of the $Se-CCl₃$ bond initiates the reaction, followed by addition of the trichloromethyl radical to the less substituted alkenic atom, and finally transfer of the PhSe group from **1** to the resulting 2-alkyl radical (Scheme 4).

Several of the adducts **2** were then transformed into allylic selenides **3** by dehydrochlorination with KOBut in THF at -30 °C (except for **3f**, which required 6 h at 10 °C), and finally into α , β -unsaturated carboxylic acids **4** by oxidation and *in situ* [2,3]sigmatropic rearrangement (Scheme 3) of the resulting selenoxides.11 Products **4a**, **4b** and **4f** were obtained as the E -isomers with high stereoselectivity. When $Et₂NH$ was present during the latter step, the corresponding diethylamides were obtained instead. These results are shown in Table 2. Presumably, the sigmatropic rearrangement produces **6** initially, which then hydrolyses to the carboxylic acid **4** (Scheme 5). On the other hand, **6** reacts preferentially by aminolysis in the presence of diethylamine to afford the amide **5** instead of **4** after aqueous workup.

All new compounds reported here gave IR, 1 H NMR, 13 C NMR and low and high resolution mass spectra consistent with their structures.

These results demonstrate that the free-radical additions of readily available selenide **1** to alkenes occur efficiently and with high regioselectivity. Moreover, when the above process was used in conjunction with base-promoted dehydrochlorination and [2,3]sigmatropic rearrangement of the corresponding selenoxides, a novel method for the overall regioselective carboxylation of alkenes was achieved.

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support.

Footnote and References

* E-mail: tgback@acs.ucalgary.ca

- 1 T. G. Back, in *Organoselenium Chemistry*, ed. D. Liotta, Wiley, New York, 1987, ch. 7; C. Paulmier, *Selenium Reagents and Intermediates in Organic Synthesis*, Pergamon, Oxford, 1986, pp. 214–218.
- 2 T. G. Back and S. Collins, *J. Org. Chem.*, 1981, **46**, 3249; T. G. Back, S. Collins and R. G. Kerr, *J. Org. Chem.*, 1983, **48**, 3077; R. A. Gancarz and J. L. Kice, *J. Org. Chem.*, 1981, **46**, 4899; T. Miura and M. Kobayashi, *J. Chem. Soc., Chem. Commun.*, 1982, 438.
- 3 T. G. Back and M. V. Krishna, *J. Org. Chem.*, 1988, **53**, 2533; A. Ogawa, H. Yokoyama, K.Yokoyama, T. Masawaki, N. Kambe and N. Sonoda, *J. Org. Chem.*, 1991, **56**, 5721.
- 4 D. L. Boger and R. J. Mathvink, *J. Org. Chem.*, 1989, **54**, 1777.
- 5 T. Toru, T. Seko, E. Maekawa and Y. Ueno, *J. Chem. Soc., Perkin Trans. 1*, 1988, 575.
- 6 J. H. Byers and G. C. Lane, *J. Org. Chem.*, 1993, **58**, 3355; J. H. Byers, J. G. Thissell and M. A. Thomas, *Tetrahedron Lett.*, 1995, **36**, 6403; D. P. Curran, E. Eichenberger, M. Collis, M. G. Roepel and G. Thoma, *J. Am. Chem. Soc.*, 1994, **116**, 4279; T. G. Back, P. L. Gladstone and M. Parvez, *J. Org. Chem.*, 1996, **61**, 3806; P. Renaud and S. Abazi, *Synthesis*, 1996, 253.
- 7 C. Walling and E. S. Huyser, *Org. React.*, 1963, **13**, 91.
- 8 D. P. Curran, A. A. Martin-Esker, S.-B. Ko and M. Newcomb, *J. Org. Chem.*, 1993, **58**, 4691.
- 9 D. H. R. Barton, T. Okano and S. I. Parekh, *Tetrahedron*, 1991, **47**, 1823; L. M. Yagupol'skii and N. V. Kondratenko, *Russ. J. Gen. Chem.*, 1967, **37**, 1686.
- 10 R. C. Larock, *Comprehensive Organic Transformations*, VCH, New York, 1989, pp. 185–188; R. P. A. Sneeden, in *The Chemistry of Carboxylic Acids and Esters*, ed. S. Patai, Wiley, London, 1969, ch. 4.
- 11 H. J. Reich, in *Organoselenium Chemistry*, ed. D. Liotta, Wiley, New York, 1987, ch. 8.

Received in Corvallis, OR, USA, 13th June 1997; 7/04153E