The role of back-bonding in the determination of classical *vs*. non-classical bonding in EH_{3^+} and EH_{5^+} minimum structures for E = C, Si and Ge

Emma del Río, María I. Menéndez, Ramón López and Tomás L. Sordo*

Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, C/Julián Clavería, 8. 33006 Oviedo, Principado de Asturias, Spain

A rationalization of bonding in EH_{3^+} and EH_{5^+} classical and non-classical most stable minimum structures is proposed for E = C, Si and Ge by means of a back-bonding interaction which when present is clearly displayed by a configuration analysis and explains the lack of bridged hydrogens in the corresponding structure.

Very recently there has been a strong interest in the study of the species EH_3^+ and EH_5^+ for E = C, Si and Ge^{1-8} For CH_3^+ high level computations have rendered no side-on HC+...H2 complex the classical D_{3h} symmetric structure being the most favored energetically. In contrast, for SiH₃⁺ and GeH₃⁺ two different minimum structures have been found: one of D_{3h} symmetry and the other, a non-classical side-on complex, of C_s symmetry.¹ On the other hand, for the $\rm EH_{5^+}$ systems, the global minimum structures are non-classical $C_{\rm s}$ structures characterized by a three-center-two-electron bond having a five-coordinate central atom and bridged hydrogens. No classical five-coordinate minimum structure have been found for these EH5+ systems.2-8 It has been argued that this is so because the energy required to break the H-H bond is not compensated by the two newly formed E-H bonds⁷ in contrast with the classical EH_{3^+} structures where the H₂ cleavage seems to be adequately compensated.

In this work we propose a rationalization of bonding in the title EH_3^+ and EH_5^+ systems by using the back-bonding concept which when present is clearly displayed by a configuration analysis.

All structures were optimized at the Becke3LYP DTF level⁹ with the standard 6-311++G(2d,2p) basis set using the Gaussian 94 program.¹⁰ The nature of the stationary points was further characterized by frequency calculations which also gave the zero-point vibrational energy (ZPVE) correction. This theory level has previously proved to be adequate to study some of the title systems.¹ DFT wavefunctions were analyzed by means of a theoretical method developed by Fukui's group¹¹ using the ANACAL program.¹² This method is based on the expansion of the MOs of a complex system in terms of those of its fragments, and configuration analysis. This type of analysis has proved useful for understanding the chemical features of complex formation from chemically interacting systems.

Table 1 collects the Becke3LYP/6-311++G(2d,2p) total energies and ZPVE of the EH₃⁺ and EH₅⁺ (E = C, Si and Ge) minimum structures studied in this work: the classical D_{3h} minimum structures of CH₃⁺, SiH₃⁺ and GeH₃⁺, the side-on C_s structures of SiH₃⁺ and GeH₃⁺, and the global minimum structures of C_s symmetry of CH₅⁺, SiH₅⁺ and GeH₅⁺. For SiH₃⁺ and GeH₃⁺ the D_{3h} structures are the most stable ones by 28.4 and 11.1 kcal mol⁻¹, respectively (27.1 and 10.0 kcal mol⁻¹ when ZPVE is included).

Table 2 presents the most important changes in the electronic population of the Kohn–Sham MOs of EH_{3^+} and EH_{5^+} minimum structures. Table 3 displays the coefficients of the most important electronic configurations of fragments in the minimum structures studied in this work.

We see from Table 2 that in the EH_3^+ structures of D_{3h} symmetry the HOMOs of both fragments and the NHOMO of the EH⁺ fragment lose electronic population and the LUMO and the NLUMO of the EH⁺ cationic fragment and the LUMO of H₂ become appreciably populated. Table 3 shows that this

Table 1 Becke3LYP/6-311++G(2d,2p) total energy (E_h) and ZPVE [kcal mol⁻¹ (1 cal = 4.184 J)] of EH₃⁺ and EH₅⁺ minimum structures (E = C, Si, and Ge)

HE HH	H H H H	H H H H	H—H H _{mm} E—H
side-on, $C_{\rm s}$	D _{3h}	C <i>C</i>	Si, Ge
Species		Total energy	ZPVE
$\begin{array}{c} \mathrm{CH}_{3}^{+}\\ \mathrm{SiH}_{3}^{+}\\ \mathrm{GeH}_{3}^{+}\\ \mathrm{CH}_{5}^{+}\\ \mathrm{SiH}_{5}^{+}\\ \mathrm{GeH}_{5}^{+}\end{array}$	$\begin{array}{c} D_{3\mathrm{h}} \\ D_{3\mathrm{h}} \\ \mathrm{side-on,} \ C_{\mathrm{s}} \\ D_{3\mathrm{h}} \\ \mathrm{side-on,} \ C_{\mathrm{s}} \\ C_{\mathrm{s}} \\ C_{\mathrm{s}} \\ C_{\mathrm{s}} \\ C_{\mathrm{s}} \end{array}$	$\begin{array}{r} -39.49360\\ -290.96382\\ -290.91861\\ -2078.46433\\ -2078.44665\\ -40.74944\\ -292.16795\\ -2079.66377\end{array}$	19.6 13.9 12.6 13.1 12.0 31.9 23.8 22.7

Table 2 Most important changes in the electronic population (Δv) of the Kohn–Sham MOs of EH₃+ (A = EH⁺; B = H₂) and EH₅+ (A = EH₃+; B = H₂) minimum structures (E = C, Si, Ge), net charge transfer (CT) from H₂ to the cation, and H–H distance (Å) where <1 Å

		SiH ₃ +		$GeH_{3^{+}}$	GeH ₃ +			
	CH_{3^+} D_{3h}	D_{3h}	side-on $C_{\rm s}$	$D_{3\mathrm{h}}$	side-on, $C_{\rm s}$	CH_{5}^{+} C_{s}	SiH_5^+ C_s	GeH_5 C_s
A NLUMO	+0.09	+0.03	0.0	+0.75	+0.19	0.0	+0.03	+0.01
LUMO	+1.05	+0.70	+0.22	+0.09	0.0	+0.83	+0.25	+0.22
НОМО	-0.61	-0.70	-0.05	-0.61	-0.03	-0.24	-0.03	-0.02
NHOMO	-0.14	-0.17	-0.01	-0.18	0.0	-0.03	0.0	0.0
B LUMO	+0.72	+1.08	+0.04	+1.08	+0.03	+0.15	+0.02	+0.02
НОМО	-1.33	-1.19	-0.25	-1.25	-0.22	-0.84	-0.29	-0.25
СТ	0.41	0.01	0.18	0.07	0.17	0.52	0.24	0.20
d(H–H)			0.782		0.773	0.988	0.777	0.772

Table 3 Coefficients of the most important configurations of fragments in the $EH_{3^+}(A = EH^+; B = H_2)$ and $EH_{5^+}(A = EH_{3^+}; B = H_2)$ minimum structures (E = C, Si, Ge)

		SiH_{3}^{+}		GeH_{3^+}	GeH_{3^+}			a u .
Configuration	CH_{3^+} D_{3h}	D_{3h}	side-on, $C_{\rm s}$	$D_{3\mathrm{h}}$	side-on, $C_{\rm s}$	$CH_{5^{+}}$ C_{s}	$S_1H_5^+$ C_s	GeH_5^+ C_s
AB	0.0	0.0	+0.7620	0.0	+0.8017	+0.3152	+0.7480	+0.7793
A-B+(HO-LU)	0.0	0.0	+0.2515	0.0	-0.0247	+0.3691	+0.2626	+0.2513
A-B+(HO-NLU)	0.0	0.0	0.0	0.0	+0.2366	0.0	+0.0717	+0.0500
A ²⁻ B ²⁺ (HO-LU/HO-LU)	+0.1489	+0.0753	+0.0356	0.0	0.0	+0.1514	+0.0375	+0.0341
A ²⁻ B ²⁺ (HO-NLU/HO-NLU)	0.0	0.0	0.0	+0.0844	+0.0307	0.0	0.0	0.0
AB**(HO-LU/HO-LU)	+0.0844	+0.1291	0.0	+0.1415	0.0	0.0	0.0	0.0
A*B*(HO-LU/HO-LU)	+0.1638	+0.1808	0.0	0.0	0.0	0.0	0.0	0.0
A*B*(HO-NLU/HO-LU)	0.0	0.0	0.0	+0.1660	0.0	0.0	0.0	0.0
A±B+(HO-LU/HO-LU)	+0.1638	+0.1808	+0.0201	0.0	0.0	+0.0916	0.0	0.0
A±B+(HO-LU/HO-NLU)	0.0	0.0	0.0	+0.1660	0.0	0.0	0.0	0.0
A-B+*(HO-LU/HO-LU)	+0.1865	-0.1705	0.0	-0.0546	0.0	0.0	0.0	0.0
A-B+*(HO-NLU/HO-LU)	0.0	0.0	0.0	+0.1860	0.0	0.0	0.0	0.0
A+B-*(HO-LU/HO-LU)	+0.0741	-0.1368	0.0	-0.1262	0.0	0.0	0.0	0.0
A*-B+(HO-LU/HO-LU)	+0.1308	-0.0799	0.0	0.0	0.0	0.0	0.0	0.0

electronic rearrangement is caused by two different interactions between the fragments: a charge transfer from the HOMO of H₂ to the LUMO or NLUMO of the EH+ moiety, and a backdonation from the HOMO of the cationic fragment to the LUMO of H₂. In the side-on structures of SiH₃⁺ and GeH₃⁺ the spatial disposition of the fragments is compatible only with an interaction of dihydrogen with the vacant orbitals of EH_{3^+} . In effect, Table 2 shows that the LUMO or NLUMO of the EH+ cationic fragment gain electronic population whereas the HOMO of H₂ becomes less populated. We see in Table 3 that this redistribution of electrons is due to an HOMO(H₂)-LUMO (SiH⁺) or HOMO(H₂)-NLUMO (GeH⁺) interaction. These are then donor-acceptor complexes between the dihydrogen ligand (donor) and EH⁺ as already reported.¹ The reason why there is no side-on structure in the case of CH3+ is that the LUMOs of CH⁺ are more stable (-0.55 eV) than the HOMO of H₂ (-0.43eV). As a consequence, in a hypothetical side-on structure of CH3+ a very strong charge transfer would take place from H2 to CH^+ in a first phase. The depopulation of the HOMO of H_2 produced by this charge transfer would cause an important elongation of the H-H bond and a stabilization of the LUMO of dihydrogen which would allow the interaction of H₂ with the HOMO of CH+ through back-bonding and the formation of the D_{3h} structure.

For the EH₅⁺ systems the most stable structures have C_s symmetry with the H₂ unit bound sideways to the EH₃⁺ fragment. However, there is a significant difference between CH5⁺ and SiH5⁺ and GeH5⁺. In SiH5⁺ and GeH5⁺ the H2 unit preserves its entity only slightly perturbed by the interaction with the $EH_{3^{+}}$ fragment whereas in $CH_{5^{+}}$ the H_{2} unit presents a considerably elongated bond (see Table 2). This difference can be understood in terms of the electronic configurations of the fragments (see Table 3). In effect, for SiH_{5^+} and GeH_{5^+} the wavefunction is a mixture mainly of the zero configuration and the monotransference from the HOMO of H₂ to the LUMO of EH₃⁺ whereas for CH₅⁺ the wavefunction includes in addition the ditransference from the HOMO of H₂ to the LUMO of EH₃+ and a small contribution from the cross transference from the HOMO of H₂ to the LUMO of CH₃⁺, and from the HOMO of CH₃⁺ to the LUMO of H₂. Accordingly, we see in Table 2 that the LUMO of the EH3+ fragment is considerably more populated and its HOMO loses more electronic density, and the HOMO of H₂ loses more electronic population and its LUMO becomes more populated in the case of CH₅⁺ than in the other two cases. This can be explained again as a consequence of the fact that the LUMO of $C\dot{H}_{3^+}$ (-0.49 eV) is more stable than the HOMO of H₂. This determines a very strong charge transference from the H_2 fragment to $C\dot{H}_{3^+}$ which causes the elongation of the H-H bond making possible even a back donation from the HOMO of CH_3^+ to the LUMO of H_2 . As a consequence, while in SiH₅⁺ and GeH₅⁺ the H₂ fragment interacts only with the p_z orbital of the central atom whose three sp² hybrids form three E–H bonds, in CH₅⁺ two of the sp² hybrids of the central atom form two C–H bonds and the NHOMO of the CH₅⁺ is a linear combination of the third sp² hybrid, the 1s atomic orbital (AO) of the two H atoms of the H₂ moiety and the 1s AO of the remaining H atom. This difference is clearly appreciated in the geometry of the EH₅⁺ systems. In the case of E = Si, Ge the H₂ fragment is symmetrically situated in front of the p_z AO of the central atom parallel to the sp² plane whereas in CH₅⁺ the H₂ fragment is placed between one of the sp² hybrids and the p_z AO of C, the remaining H atom being displaced from the linear direction along the hybrid AO.

The authors are grateful to Professor Agustí Lledós for helpful comments and suggestions, and to DGICYT for financial support (PB94-1314-C03-01). E. del R. also thanks to the DGICYT (Spain) for a grant.

References

- 1 J. Kapp, P. R. Schreiner and P. v. R. Schleyer, J. Am. Chem. Soc., 1996, 118, 12154.
- 2 P. R. Schreiner, S.-J. Kim, H. F. Schaefer III and P. v. R. Schleyer, *J. Chem. Phys.*, 1993, **99**, 3716.
- 3 H. Müller, W. Kutzelnigg, J. Noga and W. Klopper, J. Chem. Phys., 1997, 106, 1863.
- 4 P. v. R. Schleyer, Y. Apeloig, D. Arad, B. T. Luke and J. A. Pople, *Chem. Phys. Lett.*, 1983, **95**, 477.
- 5 C. H. Hu, M. Shen and H. Schaefer III, *Chem. Phys. Lett.*, 1992, **190**, 543.
- 6 D. W. Boo and Y. T. Lee, J. Chem. Phys., 1995, 103, 514.
- 7 P. R. Schreiner, H. F. Schaefer III and P. v. R. Schleyer, J. Chem. Phys., 1994, **101**, 2141.
- 8 E. F. Archibong and J. Leszczynski, J. Phys. Chem., 1994, 98, 10084.
- 9 A. D. Becke, Phys. Rev. A, 1988, 38, 3098; J. Chem. Phys., 1993, 98, 5648.
- 10 GAUSSIAN 94, M. J. Freisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheesman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Lahan, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
- 11 H. Fujimoto, S. Kato, S. Yamabe and K. Fukui, J. Chem. Phys., 1974, 60, 572.
- 12 R. López, M. I. Menéndez, D. Suárez, T. L. Sordo and J. A. Sordo, Comput. Phys. Commun., 1993, 76, 235.

Received in Exeter, UK, 10th June 1997; 7/04055E