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Cycles frustrating fractal formation in an AB2 step growth polymerization
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The step growth of a flexible AB2 monomer, normally
considered to produce dendrimers or fractal molecules, as
they are themselves self-similar to their branches, is frus-
trated by the formation of one cycle within each molecule,
according to a Monte Carlo lattice study of the evolution of
the topological trees that are embedded in three-dimensional
space; the number of cycles of m residues is well fitted by the
relationship Rm = K0 pa

m m2e, pa being the extent of reaction
of the A groups; at the end of a polymerization of N0
monomers the total number of cycles, and of molecules, is
given by the product of K0 and the Euler–Riemann function
x(e) so there is a simple relationship between these quantities
and the mean number average degree of polymerization at
infinite time: N0 = K0 < x > n,H x(e).

The step growth of an AB2 monomer, the next more elaborate
after the AB system, is usually considered to follow the classical
branching pattern of polymerization of Flory,1,2 the molecules
evolving in the forms of Cayley trees,3 each being rooted upon
an A group. At each step the A group of one molecule reacts
with a B group of another. A and B groups might form, for
example, ester links. The growth has a fractal characteristic, for
at each step molecules and branches are self-similar.4 The
assumption that intramolecular reactions do not take place, or
the neglect of them in the treatment, means that molecules tend
towards an infinitely high molecular mass with one A group
each.1 This common5 assumption is inherently unrealistic,
unless some special stiffness factor applies, such as the presence
of p-substituted aromatic rings.6 We envisage intramolecular
reactions in molecules that have several flexible bonds between
the functional groups, each bond being subject to simple
rotational isomeric state considerations,7 as when developing
step-growth chemistry of difunctional monomers did Carothers,
who recognised the formation of small rings as competing with
linear growth.8 To tackle such issues in a manner that allows the
proper competition in three-dimensional space between fractal
growth to yield trees and their cyclisation to yield graphs3,9 we
have embedded them upon a lattice of a type that we have
devised to minimise any effect from its particular structure,10

and explore it with the Monte Carlo method to establish the
involved and elusive pattern of behaviour.11,12 Our three-
dimensional lattice model for step growth10 resembles the two-
dimensional fluctuating bond model used for other purposes:13

components of the structures are linked through bonds that lie
on the lattice spacings, l, on the in-plane diagonals, A2l, and on
the through-space diagonals, A3l. (One such bond corresponds
to several covalent bonds in a real molecule.10,13) Here we
represent the monomer on four lattice sites as A–N(B)2, the A
group and the two B groups attached directly to the node N. This
allows the explicit representation as a three-membered ring of
the loop, the pendent structure that forms from an A group and
a B group on the same node. 10% of the lattice sites were left
vacant to represent free volume to facilitate movement
throughout the polymerization.

We show a single monomer and a dimer placed upon the
lattice in two dimensions in Fig. 1(a) in the form of Cayley
trees. In Fig. 1(b) is the structure obtained by a B group

movement, and the product after that dimer reacts to form a
loop. In Fig. 1(c) is a hexamer with two possible internal
reactions of the A group, and one is performed. Though this is
rather confined, it does show that, as the lattice-represented
molecule grows in size, the A group may become surrounded by
an increasing number of B groups within the same molecule,
and the chance of an intramolecular reaction may well increase.
A group reactions will take place quite readily for there is
always an excess of B groups. A simple consideration will
recognise that eventually all the free A groups, located
throughout at the root of a tree,3 if not used in a step growth to
enhance the degree of polymerization, will be so consumed, and
then growth within the system will cease. This may have
happened with a tetrafunctional siloxane alkene system,14 for it
was reported that the molecular mass was not increased by extra
time or catalyst.

Initially the molecules were placed in random orientations
within layers, and then were moved to randomise their
configurations and positions. A,B pairs adjacent upon the lattice
were randomly joined by a new bond, and simultaneously units
moved upon the lattice by exchanging bead sites within the
constraints of the molecular framework to randomise configura-
tions.15,16 We have tested that movements cause no bond or unit
to pass through another: topological requirements are re-
spected.15 Five attempts at movement were performed each
time a reaction was with success rates ( > 70%) higher than for
a single chain on a simple cubic lattice.17 The competing
processes of chain branching and cycle formation thus take
place in a manner that faithfully reflects the considerations of
space, topology and configurations, as the A groups react with
the excess of B groups present. (This competition is also present
in gel formation.18,19) For the system of 603 lattice sites, we
used 5M CHOICE11 or time cycles, when only 0.003% of the A
groups remained.

Fig. 1 (a) AB2 monomer and dimer displayed as trees, (b) dimer after a B
group movement that facilitates the reaction whose product is shown, (c) a
representative hexamer: note how the A end group is adjacent to two B
groups on the same molecule, (d) the structure formed by an intramolecular
reaction: a two-residue (m = 2) cycle with two two-residue tails. The
products in (b) and (d) lack A groups. These illustrations are drawn in two
dimensions; the simulations were performed in three dimensions.
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We obtained from the records Rm, the number of cycles
involving m residues, at several values of pa. From nine
simulations we plot the mean data for loops (m = 1) and cycles
up to m = 5 on the log Rm–log pa plots of Fig. 2, where it may
be seen that the points fall onto good straight lines: the slopes of
these lines are well given by the integers, m, within a standard
error or so [e.g. for the cycles with m = 5 the exponent obtained
by non-linear least-squares fitting20 is 5.13 (±0.14)]. Thus Rm =
Cmpa

m. It is not difficult to envisage such integer power
relationships as a limiting behaviour at low pa and when m is
small, for example the formation of a loop (m = 1) will have a
finite probability at the very start, and once a dimer has formed
with a chance proportional to pa its cyclization will have the
same proportionality to pa. But this clearly persists to the end of
the reaction and at higher m, where it expresses the structural
results of a complex set of serial and parallel chemical reactions
within a variety of configurations and structural isomers of an
increasingly large range of oligomers.

If we examine the data as a function of m, we find that at each
value of pa they are well fitted by Rm = Apmg, the values of g
falling linearly with pa as usual during the reaction.10 It appears
that g at the end of the polymerization is 2.714 (±0.0005), which
is not significantly different from e. These two power
relationships may be combined to yield:

Rm = K0 pa
m m2e (1)

the incidence of rings of size m within the system at any pa,
when growth is kinetically controlled (K0 = A1 = C1).

When pa = 1, the total number of rings is the product of K0
and the Euler–Riemann x function,21 K0 x(e) = K0 (1 + 22e +
32e+ . . .), a finite number as e > 1. Since the number of rings
and the number of molecules is then identical, for each molecule
contains one cycle, we have the relationship between the initial
number of molecules, N0 the number average degree of
polymerization finally achieved, < x > n,H:

N0 = K0 < x > n,H x(e) (2)

Taking our value of C1 = 3564 ± 3 = K0, we find < x > n,H to
be 10.75 ± 0.01 model residues, a number which compares well
with the ratio of the number of molecules present at the start to
that at the end, 10.78 ± 0.07. A real AB2 molecule may have a
different propensity to form loops from the 78.2% predicted in
this calculation, depending upon the configurations it might

adopt and the possibilities of ring strain,7 so cycle numbers may
deviate from eqn. (1). (There might be too few bonds to allow
a reaction between the A and B functional groups to form loops:
then rings of size m = 2 might assume the main role for limiting
the formation of high molecular mass material.16) We note a
second study using a different lattice representation of the
flexible AB2 monomer found essentially the same behaviour:22

the forms of eqns. (1) and (2) are not dependent upon the
monomer representation. As well as first utilising e,23 Euler also
introduced the x-function with real arguments when developing
number theory.21 Here e appears unusually as an exponent of
the integers m in this account of the formation of single cycle
graphs from Cayley trees when both are embedded and growing
from AB2 monomers within three-dimensional space.

This AB2 step growth follows a complicated pattern of two
competing processes, the development of highly branched
structures resplendent with functional groups and simultaneous
cyclizations to give a range of ring sizes. Though cyclization
consumes only a small proportion of the A functional groups,
the proportion being 1 in < x > n,H, it does eventually terminate
the polymerization. Fractal formation by a flexible AB2
monomer is frustrated by the formation of cycles.
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Fig. 2 Logarithmic plots of Rm, the number of rings of size m found in the
system, against the extent of reaction, pa. The lines fall in the order m = 1,2,
. . 5, and have integer slopes.
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