Synthesis and characterisation of the first stable, heteroleptic silylstannylenes†

Christian Drost, Barbara Gehrhus, Peter B. Hitchcock and Michael F. Lappert*

The Chemistry Laboratory, University of Sussex, Brighton, UK BN1 9QJ

Treatment of the silylene Si[C₆H₄(NCH₂Bu^t)₂-1,2] with SnAr₂ or SnAr[N(SiMe₃)₂] yields the thermally stable (silyl)stannylene SnAr[Si{C₆H₄(NCH₂Bu^t)₂-1,2}X] [X = Ar 1 or N(SiMe₃)₂ 2], having δ [¹¹⁹Sn{¹H}] 412 [¹J(²⁹Si-^{117/119}Sn) 715/749 Hz] (1) and δ 621 (2); crystalline 1 has a V-shaped Si–Sn–C skeleton, l(Sn–Si) = 2.636(2) Å and two remote Sn…N contacts, av. 2.75 Å (to one NMe₂ group of each of the aryl groups).

Homoleptic heavier group 14 metal(II) (M = Ge, Sn or Pb) compounds in which M is bound to a more electropositive element than carbon (e.g., Si, Ge or a metal) are rare. Two types of group 6 metal complexes are known, $[Pb{Mo(\eta^5-C_5Me_5)} (CO)_{3}_{2}(thf)]^{1a}$ [and $\eta^{5}-C_{5}H_{5}$ or $\eta^{5}-C_{5}H_{3}(SiMe_{3})_{2}-1,3$ anaand $[Ge\{C_6H_3(C_6H_2Me_3-2',4',6')_2-2,6\}\{Mo(\eta^5$ logues $C_5H_5(CO)_2$],^{1b} as well as some tin(II) phosphides^{2a,b} and arsenides,^{2b,c} but especially relevant to the present work are three silvl derivatives: $[Sn{Si(SiMe_3)_3}_2]_{2,3}$ [Sn{Si(Si- $Me_{3}_{3}_{2}(\mu-Cl)Li(thf)_{3}^{4}$ and $Pb[Si(SiMe_{3})_{3}]_{2}^{3}$ (thf = $OC_{4}H_{8}$). Each of these five X-ray characterised compounds was prepared by a metathetical exchange reaction, using an alkali metal salt of the appropriate ligand and $M'Cl_2$ (M' = Ge or Pb) or³ $M'[N(SiMe_3)_2]_2$ (M' = Sn or Pb). Two transient heterobinuclear complexes have been identified spectroscopically or by trapping experiments, $Ge(C_6H_2Me_3-2,4,6)_2M'X_2$ [M'X₂ = $Si(C_6H_2Me_3-2,4,6)_2^5$ or $Sn(C_6H_2Pri_3-2,4,6)_2$],⁶ each obtained from tetravalent precursors.

Thermally stable mononuclear heavier group 14 metal(II) compounds MX_2 (M = Ge, Sn or Pb and X⁻ is a mono- or bidentate ligand) are highly reactive, but insertion reactions into M-X bonds leading to new M^{II} complexes MX'_2 or M(X)X' have not previously been reported. The latter (heteroleptic) type is in any event rare.⁷

We now describe the synthesis (Scheme 1) and characterisation of the first heteroleptic (silyl)stannylenes, the crystalline, yellow–orange, diamagnetic $SnAr[Si\{C_6H_4(NCH_2Bu^t)_2-1,2\}Ar]$ 1 and the red–brown $SnAr[Si\{C_6H_4(NCH_2Bu^t)_2-1,2\}\{N(SiMe_3)_2\}]$ 2 [Ar = $C_6H_3(NMe_2)_2-2,6$]. They were obtained by treatment of the yellow silylene $Si[C_6H_4(NCH_2-Bu^t)_2-1,2]^8$ with for 1 the yellow $SnAr_2^7$ in *n*-hexane at ambient temperature in a slow reaction, or for 2 with the yellow

Scheme 1 Synthesis of the silylstannylenes **1** and **2** $[Ar = C_6H_3(NMe_2)_2-2,6]$; yields refer to crystalline products (from Et₂O for **1** or *n*-C₆H₁₄ for **2**)

 $SnAr[N(SiMe_3)_2]^7$ under the same conditions but in a faster reaction.

The crystalline aryl(silyl)stannylenes **1** and **2** were thermally robust, decomposing before melting only at *ca*. 120 °C. The orange (**1**) and orange–red (**2**) hexane solutions were more labile (**1** > **2**), the former slowly (days) depositing tin at ambient temperature. Their stability may, in part, be due to close contacts between tin and one or more *o*-nitrogen atoms of the Ar– ligand(s), *cf*. ref. 7. Each of **1** and **2** gave satisfactory microanalytical results, as well as multinuclear NMR spectra.‡ The EI (70 eV) mass spectra showed the parent molecular ion in 2% intensity for **1** and 9% for **2**, as the highest *m/z* peak; the most intense fragment ion was [Si{C₆H₄(NCH₂Bu¹)₂-1,2}Ar]+ for **1** and [Si{C₆H₄(NCH₂Bu¹)₂-1,2}{N(SiMe₃)₂]+ for **2**. Single crystal X-ray diffraction data established the molecular structure of **1**.§

The ¹H NMR spectrum of 1 in C_6D_6 at 298 K showed separate signals for each of the two CH₂CMe₃ groups and several for the eight NMe groups of the two Ar moieties.[‡] The corresponding spectrum of 2 in [2H8]toluene at 298 K revealed two signals for the SiMe3 groups but only one for the two CH_2CMe_3 groups and a broad feature for the NMe₂ protons. The latter split into two separate signals at 238 K. This indicates that at the higher temperature there is a rapid $N \rightarrow Sn$ exchange process involving the Sn…NMe₂-2≓Sn…NMe₂-6 fragments, while at the lower temperature only one of the two NMe₂ groups is bound to tin, as also found in the solid state for 1, vide infra. This interpretation is consistent (at least for 1) with the values found for the ¹¹⁹Sn{¹H} NMR spectral chemical shifts: δ 412 (1) and δ 621 (2) in PhMe-C₆D₆ at 298 K, which may be compared with δ 442 for SnAr₂ and 422 for SnAr[N(SiMe₃)₂] having four- and three-coordinate tin, respectively.7 A comparison of these results with the two existing (silyl)tin(II) compounds is not possible; since attempts to detect ¹¹⁹Sn or ²⁹Si NMR spectral signals in the range -60 to +30 °C for $[Sn{Si(SiMe_3)_3}_2]_2$ were unsuccessful,³ while for $[Sn{Si (SiMe_3)_3$ ₂(μ -Cl)Li(thf)₃] only the ²⁹Si chemical shifts were recorded, δ – 6.23 for Si(SiMe₃)₃ and δ – 22.14 for Si(SiMe₃)₃.4 The SiSn ²⁹Si{¹H} NMR spectral chemical shifts in PhMe- C_6D_6 at 298 K were found at δ 48.8 for **1** and δ -27.8 for **2**. The former signal, unlike the latter, showed readily discernible coupling to tin: ¹J(²⁹Si-¹¹⁷Sn) 715 Hz and ¹J(²⁹Si-¹¹⁹Sn) 749 Hz; these values may be compared with ${}^{1}J({}^{29}Si{}^{-119}Sn)$ of 580 Hz for Sn(SiMe₃)Me₃⁹ and 515 Hz for (SnPh₃)₂SiPh₂.¹⁰ The ²⁹Si–Sn coupling in **2** may have been obscured by coupling to the ¹⁴N nucleus of the $N(SiMe_3)_2$ group.

The pathway leading to 1 or 2 may have implicated an initial transient heterodinuclear tin-silicon 'double-bonded' complex 3, which was rapidly isomerised by a 1,2-shift of X [X = Ar or N(SiMe₃)₂] from tin to silicon. Evidence for 3 rests on the

Fig. 1 CAMERON¹⁶ representation (50% thermal vibration ellipsoids) of

the molecular structure of $SnAr[Si{C_6H_4(NCH_2Bu^1)_2-1,2}Ar]$ **1** [Ar = $C_6H_3(NMe_2)_2$ -2,6]. Selected bond lengths (Å) and angles (°): Sn-C(1) 2.210(8), Sn-Si 2.636(2), Sn···N(3) 2.569(6), Sn···N(2) 2.580(6), Si-C(11) 1.904(8); C(1)-Sn-Si 107.0(2), N(5)-Si-N(6) 91.0(3), C(6)-C(1)-Sn 102.5(6), C(2)-C(1)-Sn 140.0(6).

existence of related kinetically inert homonuclear complexes such as $[Sn{CH(SiMe_3)_2}_2]_2,^{11}$ $[Sn{Si(SiMe_3)_3}_2]_2^3$ and $X''_2SnSnCl_2$ $[X'' = CH(SiMe_3)C_9H_6N-8]^{12}$ and the labile heterodinuclear analogue $X'_2SiGeX'_2$ ($X' = C_6H_2Me_3-2,4,6$) **4**.⁵ Precedents for a 1,2-aryl shift in group 14 element chemistry include Wagner–Meerwein rearrangements, the photolytic scrambling between Si₂X'₄ and Si₂X'''₄ (X''' = C₆H₃Me₂-2,6),¹³ and the trapping of **4** with Si(H)Et₃ generating GeH(SiEt₃)-(SiX'_3)X' with GeX'(SiX'_3) as the presumed intermediate.⁵

The molecular structure of the crystalline aryl(arylsilyl)stannylene 1, illustrated in Fig. 1, shows it to be mononuclear with a V-shaped Si-Sn-C(1) skeleton but with Sn having further remote contacts to N(2) and N(3) (from an NMe2 of each aryl group). The tin bonding environment may thus be regarded as approximating to a distorted trigonal bipyramid, N(2) and N(3) being axial and Si, C(1) and the lone pair in equatorial sites. The Si-Sn-C(1) angle of 107.0(2)° is similar to the $105.6(2)^{\circ}$ in SnAr₂,⁷ and the Sn–C(1) distance of 2.108(2) Å in 1 is likewise close to the av. of 2.214 Å in SnAr₂.⁷ The Sn–Si bond length of 2.636(2) Å is comparable to the av. 2.672 Å in $[Sn{Si(SiMe_3)_3}_2]_2^3$ and the 2.681(2) Å in $[Sn{Si (SiMe_3)_3\}_2(\mu$ -Cl)Li(thf)_3].⁴ The Sn···N(2) and Sn···N(3) contacts in 1, av. 2.75 Å, are slightly more remote than in SnAr₂ (av. 2.64 Å)⁷ or Sn[C₆H₃(CH₂NMe₂)(CH₂NMe₂)-2,6]Cl (2.56 Å).¹⁴ The aromatic ring containing C(1) is strongly tilted about the Sn-C(1) vector so as to allow N(2) to approach Sn, as evident from the significant deviations from the sp² values of the C(6)-C(1)-Sn [102.5(6)°] and C(2)-C(1)-Sn [140.0(6)°] angles; these are close to those found in SnAr₂, 104.0 and 138.2°.7 The Sn…N(3) contact from the SiAr group does not involve strain, as shown by the more typical sp² values for the C(12)-C(11)-Si [118.3(6)°] and C(16)-C(11)-Si [123.5(6)°] angles.

The reactions shown in Scheme 1 provide the first examples of insertion of (i) an unsaturated reagent into an M–Z bond of a carbene or a heavier group 14 element analogue MZ₂ generating a new metallene and (ii) a silylene into a metal–aryl or metal–amide bond. As to (ii), the reaction leading to **2** demonstrates that the migratory aptitude of $N(SiMe_3)_2$ is greater than that of Ar, as also evident from the faster rate of formation of **2** than **1**. Such reactions are likely to be antecedents of a wider series; for example involving the silylene and $M[N(SiMe_3)_2]_2$ (M = Ge, Sn or Pb).¹⁵

We thank the European Comission for providing fellowships for C. D. and B. G. (category 30), Drs A. G. Avent (NMR) and A. Abdul-Sada (MS) for data and the EPSRC for other support.

Footnotes and References

* E-mail: m.f.lappert@sussex.ac.uk

† No reprints available.

 $\ddagger NMR$ spectroscopic data [¹H NMR at 250.0 MHz in C₆D₆ for **1** or at 300.0 MHz in $[{}^{2}H_{8}]$ toluene for 2; ${}^{13}C{}^{1}H{}$ NMR at 75.47 MHz in $C_{6}D_{6}$, ${}^{29}Si{}^{1}H{}$ NMR at 99.33 MHz and ¹¹⁹Sn{¹H} NMR at 93.2 MHz, all in PhMe with C₆D₆; at 298 K unless otherwise stated]. 1: ¹H δ 0.78 and 1.02 (2s, 18 H, CMe3), 2.39, 2.49 and 2.63 (3s, 18 H, NMe2), 2.98 and 3.26 (2s, 6 H, NMe2), 2.97-3.61 (AB-type, part. hidden, CH2), 6.52-7.18 (m, 10 H, phenyl); ¹³C δ 29.41 and 29.84 (CMe₃), 34.25 and 34.89 (CMe₃), 44.98, 46.56, 47.89 (broad, NMe2), 57.04 and 59.77 (CH2), 109.06, 109.50, 111.88, 114.61, 116.11, 116.46, 116.80, 131.76, 135.30, 144.92. 146.43, 151.97, 159.44, 161.03, 162.34 and 163.46 (arom. C); ²⁹Si δ48.8 [¹J(²⁹Si-^{117/119}Sn) 715, 749 Hz]; ¹¹⁹Sn δ412. 2: ¹H (238 K) δ0.1 and 0.45 (2s, 18 H, SiMe₃), 0.95 and 1.11 (2s, 18 H, CMe₃), 2.17 and 2.61 (2s, 12 H, NMe₂), 2.28, 2.48, 2.52, 3.04, 3.09, 3.51 and 3.56 (AB-type, one signal hidden, broad signals, 4 H, CH₂), 5.95, 5.98, 6.52–7.07 (m, phenyl); 13 C δ 5.16 and 5.67 (SiMe₃), 30.09 (CMe₃), 33.78 (CMe₃), 45 (vbr, NMe₂), 56.44 (CH₂), 109.24, 117.18, 119.44, 128.47, 144.06, 146.15 and 159.88 (arom. C); ²⁹Si δ 1.28 (SiMe₃), -27.65 (Si-Sn); ¹¹⁹Sn δ 620.94.

§ *Crystal data*: **1**, C₃₆H₅₆N₆SiSn, M = 719.6, monoclinic, space group $P2_1/n$ (non-standard no. 14), a = 16.118(5), b = 11.124(3), c = 21.526(5) Å, $\beta = 101.71(2)^{\circ}$, U = 3779(2) Å³, F(000) = 1512; Z = 4, $D_c = 1.26$ g cm⁻³, μ (Mo-K α) = 7.4 cm⁻¹, specimen 0.2 × 0.2 × 0.06 mm, 4802 reflections collected for 2 < θ < 22°, 4614 independent reflections [*R*(int) = 0.057], *R*1 = 0.049 for 2872 reflections with $I > 2\sigma(I)$, wR2 = 0.123 (for all data).

Intensities were measured on an Enraf-Nonius CAD4-diffractometer [T = 293(2) K] using monochromated Mo-K α radiation ($\lambda = 0.71073 \text{ Å}$); no crystal decay. Full-matrix least squares on all F^2 refinement with SHELXL-93, H atoms in riding mode and all non-H atoms anisotropic. CCDC 182/572.

- (a) P. B. Hitchcock, M. F. Lappert and M. J. Michalczyk, J. Chem. Soc., Dalton Trans., 1987, 2635; (b) R. S. Simons and P. P. Power, J. Am. Chem. Soc., 1996, 118, 11966.
- (a) P. B. Hitchcock, M. F. Lappert, P. P. Power and S. J. Smith, J. Chem. Soc., Chem. Commun., 1984, 1669; (b) M. Driess, R. Janoschek, H. Pritzkow, S. Rell and U. Winkler, Angew. Chem., Int. Ed. Engl., 1995, 34, 1614; (c) P. B. Hitchcock, M. F. Lappert and S. J. Smith, J. Organomet. Chem., 1987, 320, C27.
- 3 K. W. Klinkhammer and W. Schwarz, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 1334.
- 4 A. M. Arif, A. H. Cowley and T. M. Elkins, J. Organomet. Chem., 1987, 325, C11.
- 5 K. M. Baines, J. A. Cooke, C. E. Dixon, H. W. Liu and M. R. Netherton, Organometallics, 1994, 13, 631.
- 6 M.-A. Chaubon, J. Escudié, H. Ranaivonjatovo and J. Satgé, *Chem. Commun.*, 1996, 2621.
- 7 C. Drost, P. B. Hitchcock, M. F. Lappert and L. J.-M. Pierssens, *Chem. Commun.*, 1997, 1141.
- 8 B. Gehrhus, P. B. Hitchcock, M. F. Lappert, J. Heinicke, R. Boese and D. Bläser, J. Organomet. Chem., 1996, 521, 211.
- 9 B. Wrackmeyer, ¹¹⁹Sn-NMR Parameters, Annu. Rep. NMR Spectrosc., 1985, 16, 73.
- 10 S. Adams and M. Dräger, J. Organomet. Chem., 1987, 323, 11.
- 11 D. E. Goldberg, P. B. Hitchcock, M. F. Lappert, K. M. Thomas, A. J. Thorne, T. Fjeldberg, A. Haaland and B. E. R. Schilling, J. Chem. Soc., Dalton Trans., 1986, 2387.
- 12 W.-P. Leung, W.-H. Kwok, F. Xue and T. C. W. Mak, J. Am. Chem. Soc., 1997, 119, 1145.
- 13 H. B. Yokelson, D. A. Siegel, A. J. Millevolte, J. Maxha and R. West, Organometallics., 1990, 9, 1005.
- 14 J. T. B. H. Jastrzebski, P. A. van der Schaaf, J. Boersma, G. van Koten, M. C. Zoutberg and D. Heijdenrijk, Organometallics, 1989, 8, 1373.
- B. Gehrhus, P. B. Hitchcock and M. F. Lappert, unpublished work.
 D. J. Watkin and L. J. Pearce, CAMERON, an interactive graphics editor, University of Oxford, 1993.

Received in Basel, Switzerland, 9th June 1997; 7/039711