## Synthesis of a D-lactosyl cluster–nucleoside conjugate†

## Andrew R. Vaino,<sup>a</sup> William T. Depew<sup>b</sup> and Walter A. Szarek<sup>\*a</sup>

<sup>a</sup> Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6 <sup>b</sup> Department of Medicine, Queen's University, Kingston, Ontario Canada K7L 3N6

## The synthesis of a nucleoside–oligolactoside conjugate, expected to provide site-specific drug delivery to the human liver, is described.

The hepatitis B virus (HBV) represents a major health concern, afflicting 350 million people worldwide.<sup>1</sup> While the virus itself is debilitating, it is not always fatal. However, liver cancer, which often arises from HBV infection, is responsible for upwards of 1 million deaths annually.<sup>2</sup> The mode of action of the HBV is thought to be similar to that of the HIV virus, in that it involves reverse transcription in the cytoplasm.<sup>3</sup> Thus, many nucleosides known to inhibit HBV reverse transcriptase, with their unwanted side-effects, have been examined as a means of controlling this deadly affliction.

The mammalian hepatocyte plasma membrane expresses the asialoglycoprotein receptor (ASGP-R),<sup>4</sup> a unique integral membrane receptor exhibiting specificity for terminal, nonreducing, β-D-galactopyranosyl or 2-acetamido-2-deoxy-β-Dgalactopyranosyl residues. This specific binding to liver cells has been examined with a variety of oligogalactosides<sup>5</sup> and oligolactosides.6 The biological evaluation of the binding of a host of molecules containing various numbers of terminal D-galactopyranosyl residues has demonstrated that, as the number of these residues increased, so did binding.<sup>5b,6</sup> Previous studies in this laboratory have involved adding one, two or three D-lactose units to a glycerol backbone.<sup>7</sup> Thus, attempts were made to extend this type of molecule, with its hepatophilicity, by the addition of an extra functional group, through which a hepatotoxic nucleoside could be appended. Ideally, by directing such a nucleoside directly to the liver, the devastating sideeffects of HBV treatment would be obviated.

Previous work with D-galactose has utilized the well-known buffer tris(hydroxymethyl)methylamine (TRIS) as a backbone.<sup>5</sup> In the present work TRIS was modified such that, after addition of three D-lactose units, a cytotoxic nucleoside could be readily introduced. The nucleoside chosen was 2'-deoxy-5-iodouridine (dIU), known to inhibit HBV.<sup>8</sup>

To synthesize the acetylated delivery vehicle 7 (Scheme 1), a suitably modified backbone was required. Beginning with hexane-1,6-diol, a single benzyl group was introduced, followed by oxidation of the remaining hydroxy group to the corresponding carboxylic acid. Addition to the amino group of TRIS was performed using the well-known peptidecoupling agent 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ).<sup>9</sup> Glycosylation of the three primary hydroxy groups of 7 with 2,3,6,2',3',4',6'-hepta-O-acetyl- $\alpha$ -D-lactosyl bromide, prepared by the method of Kartha and Jennings,<sup>10</sup> was achieved in 69% yield using the Helferich modification<sup>11</sup> of the Königs-Knorr reaction. Removal of the benzyl group was readily accomplished in 85% yield by catalytic hydrogenolysis. The confirmation of the structure of this oligolactoside was accomplished using Fourier-transform, proton chemical-shift correlation spectroscopy (COSY)^{12} and heteronuclear correlation spectroscopy (HETCOR).^{13} The  $\beta$ -D configuration for the glycosidic linkage between the lactose units and the backbone was revealed by the observation of a characteristic coupling constant<sup>14</sup> ( $J_{1,2}$  7.9 Hz). It should be noted, however, that identification of trace amounts of material having  $\alpha$ -D linkages

would have been precluded by the detection limit of the NMR experiment.

The nucleoside selected, namely dIU, required protection of the hydroxy group at C-3' prior to attachment to the delivery moiety. Thus, the selectivity of the Bu<sup>t</sup>Me<sub>2</sub>Si group for primary hydroxy groups<sup>15</sup> allowed for an efficient two-step, one-pot procedure to form **9** (Scheme 2) in a high yield. The Bu<sup>t</sup>Me<sub>3</sub>Si



Scheme 1 Reagents: i, BnBr (0.7 equiv.), NaH, THF; ii, Jones reagent; iii, (HOCH<sub>2</sub>)<sub>3</sub>CNH<sub>2</sub>, EEDQ, EtOH; iv, 5 (3 equiv.), Hg(CN)<sub>2</sub>, 1:1 MeNO<sub>2</sub>– $C_6H_6$ ; v, H<sub>2</sub>, 10% Pd/C, HCO<sub>2</sub>H, MeOH



Scheme 2 Reagents and conditions: Bu'Me<sub>2</sub>SiCl, pyridine, room temp.; ii, BzCl, 0 °C, pyridine; iii, 1% I<sub>2</sub> in MeOH; iv,  $\beta$ -CDCP, Pr<sup>i</sup><sub>2</sub>NEt, MeCN, 0 °C

Chem. Commun., 1997 1871



Scheme 3 Reagents: i, 1H-tetrazole, MeCN; ii, I<sub>2</sub>, THF, H<sub>2</sub>O, pyridine; iii, LiOH, MeOH; iv, Amberlite IR-120 (H<sup>+</sup>)

group was readily removed by treatment with a solution of  $I_2$  in MeOH at reflux temperature<sup>16</sup> to afford **10**, ready for coupling.

Many possibilities exist for the joining of the nucleoside and the carrier molecule, however, most of these were quickly discounted on the basis of possible reactivity *in vivo*; the use of a phosphoric monoester was selected. A well-established modification of the standard phosphite assembly method<sup>17</sup> was employed, with the reagent  $\beta$ -cyanoethyl *N*,*N*-diisopropylchlorophosphoramidite ( $\beta$ -CDCP)<sup>18</sup> as the coupling agent. Compound **10** afforded an unstable intermediate, presumably **11**, which, on coupling to the carrier molecule **7** in the presence of 1*H*-tetrazole followed by oxidation of the product with iodine, afforded **12** (Scheme 3) in 12% yield.<sup>‡</sup> Simultaneous cleavage of the acetic and benzoic esters, along with elimination of the  $\beta$ -cyanoethyl group, afforded the desired conjugate **13**.§

To conclude, we have demonstrated the synthesis of an easily prepared vehicle for the targeting of drugs directly to the mammalian liver. The advantages of site-specific, drug delivery are clear. Thus, the potential for conjugates such as **13**, in which a vehicle known to have a high specificity for hepatocytes is coupled to a hepatotoxic nucleoside, is tremendous. Full experimental details of this and related compounds, along with biological evaluation of the binding of these compounds to the ASGP-R and inhibition studies with HBV, will be reported in due course.

The authors thank the Natural Sciences and Engineering Research Council Canada for financial support of this research.

## **Footnotes and References**

\* E-mail: szarekw@chem.queensu.ca

† Synthesis and binding of D-galactose-terminated ligands to human and rabbit asialoglycoprotein receptor. Part VII. For Part VI, see ref. 6.

‡ Subsequent couplings with other nucleosides have been achieved in yields approaching 80%.

§ All products were identified by <sup>1</sup>H, <sup>13</sup>C, and, where applicable, <sup>31</sup>P NMR spectroscopy, as well as mass spectrometry (except for 9 and 10). Also, novel compounds 3, 4, 6, 7, 9 and 13 gave satisfactory elemental analyses.

- 1 P. Tiollais, C. Pourcel and A. Dejean, Nature, 1985, 317, 489.
- 2 R. P. Beasley, Cancer, 1988, 61, 1942.
- 3 J. Summers and W. S. Mason, *Cell*, 1982, **29**, 403; R. H. Miller, P. L. Marion and W. S. Robinson, *Virology*, 1984, **139**, 64.
- 4 G. Ashwell and J. Harford, Annu. Rev. Biochem., 1982, 51, 531;
  M. Spiess, Biochemistry, 1990, 29, 10 009.
- 5 (a) Y. C. Lee, Carbohydr. Res., 1978, 67, 509; (b) R. T. Lee, P. Lin and Y. C. Lee, Biochemistry, 1984, 23, 4255; (c) H. J. M. Kempen, C. Hoes, J. H. van Boom, H. H. Spanjer, J. de Lange, A. Langendoen and T. J. C. van Berkel, J. Med. Chem., 1984, 27, 1306; (d) M. G. Peter, P. C. Boldt, Y. Niederstein and J. Peter-Katalinic, Liebigs Ann. Chem., 1990, 863; (e) E. A. L. Biesen, D. M. Beuting, H. C. P. F. Roelen, G. A. van de Marel, J. H. van Boom and T. J. C.van Berkel, J. Med. Chem., 1995, 38, 1538.
- 6 A. Krebs, W. T. Depew, W. A. Szarek, G. W. Hay and L. J. J. Hronowski, *Carbohydr. Res.*, 1994, **254**, 257.
- 7 L. J. J. Hronowski, W. A. Szarek, G. W. Hay, A. Krebs and W. T. Depew, *Carbohydr. Res.*, 1989, **190**, 203; L. J. J. Hronowski, W. A. Szarek, G. W. Hay, A. Krebs and W. T. Depew, *Carbohydr. Res.*, 1991, **219**, 33.
- 8 E. Matthes, M. von Janta-Lipinski, H. Will, H. C. Shröder, H. Merz, R. Steffen and W. E. G. Müller, *Biochem. Phamacol.*, 1992, 43, 1571; P. C. N. Rensen, M. C. M. van Dijk, E. C. Havenaar, M. K. Bijsterbosch, J. K. Fruijt and T. J. C. van Berkel, *Nature Medicine*, 1995, 1, 221.
- 9 B. Belleau, R. Martel, G. Lacasse, M. Ménard, N. L. Weinberg and Y. G. Perron, J. Am. Chem. Soc., 1968, 90, 823; B. Belleau and G. Malek, J. Am. Chem. Soc., 1968, 90, 1651.
- 10 K. P. R. Kartha and H. J. Jennings, J. Carbohydr. Chem., 1990, 9, 777.
- 11 B. Helferich and K. Weis, Chem. Ber., 1956, 89, 314.
- A. Bax, R. Freeman and G. Morris, J. Magn. Reson., 1981, 42, 164;
  R. Benn and H. Günther, Angew. Chem., Int. Ed. Engl., 1983, 22, 350.
- A. A. Mandsley and R. R. Ernst, *Chem. Phys. Lett.*, 1977, 50, 368;
  G. Bodenhaussen and R. Freeman, *J. Magn. Reson.*, 1977, 28, 471.
- A. Bax, W. Egan and P. Kovác, J. Carbohydr. Chem., 1984, 3, 593;
  L. D. Hall, Adv. Carbohydr. Chem. Biochem., 1974, 29, 11.
- 15 K. K. Ogilvie, S. L. Beaucage, A. L. Schifman, N. Y. Theriault and K. L. Sadana, *Can. J. Chem.*, 1978, **56**, 2768; K. K. Ogilvie, A. L. Schifman and C. L. Penney, *Can. J. Chem.*, 1979, **57**, 2230.
- 16 A. R. Vaino and W. A. Szarek, Chem. Commun., 1996, 2351.
- 17 R. L. Letsinger and W. B. Lunsford, J. Am. Chem. Soc., 1976, 98, 3655.
- 18 N. D. Sinha, J. Biernat and H. Köster, *Tetrahedron Lett.*, 1983, 24, 5843.

Received in Cambridge, UK, 24th April 1997; 7/02809A