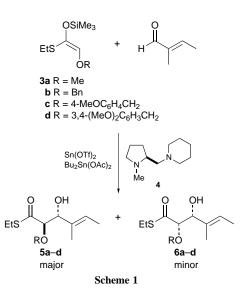

Enhanced reactivity and *anti* selectivity in the asymmetric Lewis acid-mediated Mukaiyama aldol reaction of α -alkoxythiolketene acetals with α , β -disubstituted enals: synthesis of the C26–C33 segment of rapamycin

James D. White* and Jörg Deerberg

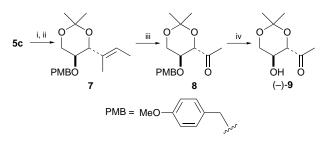
Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, USA


The tin(π)-mediated reaction of α -alkoxythiolketene acetals 3a–d with *trans*-2-methylbut-2-enal and aldehyde 10 was found to give enhanced reactivity and high *anti* selectivity in the glycolate product when an α -benzyloxy substituent was present in 3, a finding which was applied to the synthesis of a segment (C26–C33) of the immunosuppressant rapamycin.

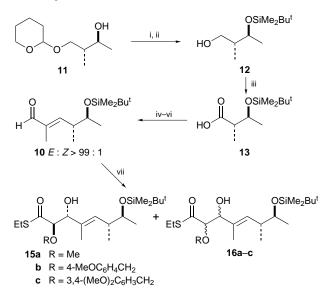
In the course of our studies directed towards a total synthesis of the immunosuppressive agent rapamycin 1,¹ a subunit was

required which contained functionality suitable for its incorporation as the C26-C33 segment of the macrolide. A difficulty associated with preparing such a fragment resides in controlling relative and absolute configuration of the vicinal anti diol moiety at C27-C28. In an attempt to solve this problem in the context of synthesis of a segment 2 required for rapamycin, we were attracted by the chiral Lewis acid-mediated anti glycolate aldolization methodology of Mukaiyama2 and Fukuyama,3 in which α -alkoxythiolketene acetals were reacted with aldehydes in the presence of tin(II) trifluoromethanesulfonate (triflate) and a proline-derived diamine ligand.⁴ We now report that this methodology is readily extended to sterically demanding α,β disubstituted enals, that both the reactivity and diastereoselectivity of the aldol process are controlled by the ketene acetal α -alkoxy substituent, and that appropriate selection of the O-protecting group of the ketene acetal allows differentiation of the adjacent oxygen functions in the aldol product.

Our initial studies were carried out with *trans*-2-methylbut-2-enal and the four α -alkoxythiolketene acetals **3a**–**d** (Scheme 1). The latter were synthesized from the corresponding thiol esters† by low temperature silylation [lithium tetramethylpiperidine (LTMP), -100 °C, Me₃SiCl] and were obtained predominantly as the (Z) isomer in each case. The reaction of ketene


acetals **3a–d** with *trans*-2-methylbut-2-enal in the presence of (*S*)-1-methyl-2-[(1-piperidyl)methyl]pyrrolidine **4** under the conditions specified by Mukaiyama² gave aldol adducts **5** and **6** as a mixture of diastereoisomers[‡] (Table 1). The *anti* adducts **5a–d** were found to be the major stereoisomers in each case;§ their optical purity was determined by chiral HPLC analysis¶ and by comparison with diastereoisomerically pure racemates synthesized independently. Absolute configuration was assigned in the case of **5c** by correlation with a substance of known stereochemistry (Scheme 2). Thus, reduction of thiol ester **5c** to the corresponding 1,3-diol, followed by acetonide formation, yielded **7** which after ozonolysis gave ketone **8**. Removal of the *p*-methoxybenzyl ether afforded (–)-**9** [[α]²_D³ –24.8 (*c* 1.0, CH₂Cl₂)] which exhibited spectral data and analytical properties identical to those of its antipode (+)-**9** [[α]²³_D +23.6 (*c* 1.0, CH₂Cl₂]] prepared from D-glucose.⁵

The results in Table 1 indicate that an increase in both chemical yield *and* diastereoselectivity is observed in the aldol reaction of Scheme 1 when an electron-releasing α -alkoxy


Table 1 Asymmetric Lewis acid-catalysed reaction of *trans*-2-methylbut-2-enal with α -alkoxythiolketene acetals^{*a*}

	Aldol products (5 and 6			
Ketene acetal $(Z:E)$	R	Yield (%) ^b	Anti (5): syn (6) ^c	Ee of 5 (%) ^d
3a (4:1)	Me	32	70:30	87
3b (12:1) ^e	Bn	82 <i>f</i>	85:15	93
3c (10:1)	4-MeOC ₆ H ₄ CH ₂	74	90:10	96
3d (6:1)	3,4-(MeO) ₂ C ₆ H ₃ CH ₂	80	95:5	92

^{*a*} Reactions were carried out in CH_2Cl_2 at -78 °C for 30–36 h except where specified. ^{*b*} Isolated yield of **5** + **6**, except where specified. ^{*c*} See footnote §. ^{*d*} See footnote ¶. ^{*e*} Experiment carried out at -50 °C. ^{*f*} Isolated yield of **5**.

Scheme 2 Reagents and conditions: i, LiAlH₄, THF, 0 °C \rightarrow room temp., 3 h; ii, Me₂C(OMe)₂, TsOH, room temp., 2 h, 80%; iii, O₃, MeOH–pyridine (cat), -78 °C, 4 min, then Me₂S, 95%; iv, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ): CH₂Cl₂–H₂O, 48%

Scheme 3 Reagents and conditions: i, Bu^tMe₂SiCl, imidazole, CH₂Cl₂, room temp., 12 h; ii, MgBr₂·OEt₂ (excess), Et₂O, 4 h, 93%; iii, Pr₄NRuO₄ (cat), 4-methylmorpholine *N*-oxide, CH₂Cl₂, room temp., 15 min, *ca.* 100%; iv, LDA, Bu^tN=CHCH(Me) SiMe₃ **14**, THF, -78 °C; v, (HO₂C)₂, H₂O; vi, I₂ (cat), Bu^tNH₂, hexane, 50 °C, 12 h, 62% from **13**; vii, **4**, Sn(OTf)₂, Bu₂Sn(OAc)₂, **3a,c,d**, CH₂Cl₂, -78 °C, 30–36 h

substituent such as 4-methoxybenzyl (PMB) or 3,4-dimethoxybenzyl (DMB) is present in the thiolketene acetal. Best results were obtained with DMB, whereas an α -methoxy substituent resulted in low diastereoselectivity and poor yield.

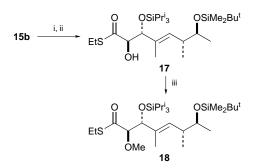

With this information in hand, our efforts focused upon α , β unsaturated aldehyde **10** needed for synthesis of subunit **2**. Alcohol **11**, obtained from methyl (*R*)-3-hydroxy-2-methylpropionate,⁶ was transformed to **12**⁷ which was oxidized to aldehyde **13** with perruthenate.⁸ Conversion of this labile substance to α , β -unsaturated aldehyde **10** was accomplished by the procedure of Corey *et al.*⁹ in which condensation of **13** with the α -lithio derivative of imine **14** was followed by mild, acidcatalysed Peterson olefination. The initial *ca.* 2 : 1 mixture of (*E*) and (*Z*) isomers of enals was smoothly equilibrated to a >99 : 1 ratio favouring (*E*) isomer **10** upon exposure to a catalytic quantity of iodine in warm hexane containing a trace (6 mol%) of *tert*-butylamine (Scheme 3).

Table 2 Asymmetric Lewis acid-catalysed aldol reaction of 10 with $\alpha\text{-alkoxythiolketene}$ acetals

Ketene acetal	Aldol Products (15 and 16)		A	
	R	Yield (%)	Anti (15): syn(16) ^a	
3a	Me	7	75:25	
3c	4-MeOC ₆ H ₄ CH ₂	54	90:10	
3d	3,4-(MeO) ₂ C ₆ H ₃ CH ₂	80	92:8	

^a See footnote §.

1920 Chem. Commun., 1997

Scheme 4 Reagents and conditions: i, $Pr_{i_3}SiOTf$, 2,6-lutidine, CH_2Cl_2 , $-40 \rightarrow ^{\circ}C$; ii, DDQ, $CH_2Cl_2-H_2O$, room temp., 1.5 h, 85% from **15b**; iii, CH_2N_2 , $BF_3 \cdot OEt_2$ (1 equiv.), CH_2Cl_2 , 94%

The reaction of **10** with α -alkoxythiolketene acetals **3a,c,d** under the conditions employed with *trans*-2-methylout-2-enal yielded *anti* aldol products **15a–c** as the major diastereoisomers (Table 2). Again, PMB- and DMB-substituted ketene acetals **3c** and **3d** showed superior stereoselectivity, whereas α -methoxy derivative **3a** was virtually unreactive with **10**. Protection of **15b** as its triisopropylsilyl ether, followed by oxidative cleavage of the PMB ether,¹⁰ gave **17** (Scheme 4), and treatment of the liberated alcohol with CH₂N₂ in CH₂Cl₂ containing BF₃·OEt₂ furnished methyl ether **18**. This material now stands ready in conveniently protected form for connection at each terminus to other subunits required for the synthesis of **1**.

One of us (J. D.) is grateful to the Swiss National Science Foundation for a Postdoctoral Fellowship (Fellowship No. 81GE-41174). This work was assisted financially by the National Institutes of Health through grant GM50574.

Footnotes and References

* E-mail: whitej@ccmail.orst.edu

[†] Thiol esters were prepared either by reaction of the corresponding acyl chloride with EtSH or from the corresponding benzylglycolic acid by treatment with DCC, catalytic DMAP and EtSH (ref. 11). 4-Methoxybenzylglycolic acid and 3,4-dimethoxybenzylglycolic acid were obtained in 91 and 87% yield, respectively, by ether synthesis from chloroacetic acid and the corresponding sodium benzylates (NaH, toluene, reflux).

[‡] In the case of **3b**, adducts were separated by flash chromatography.

§ Diastereoselectivities were determined by ¹H NMR analysis of crude reaction mixtures after workup.

¶ Chiral HPLC column: DAICEL ChiralPak AD, 350×4 mm.

- This value is in conflict with that reported by David *et al.*⁵ for (+)-9 [[α]²⁰_D +40.5 (*c* 7, CH₂Cl₂)], which is shown to be in error by this work.
- 1 J. D. White and S. C. Jeffrey, J. Org. Chem., 1996, 61, 2600.
- T. Mukaiyama, Aldrichim. Acta, 1996, 29, 59; T. Mukaiyama, I. Shiina, K. Sakata, T. Emura, K. Seto and M. Saitoh, Chem. Lett., 1995, 179; T. Mukaiyama, I. Shiina, H. Uchiro and S. Kobayashi, Bull. Chem. Soc. Jpn., 1994, 67, 1708.
- 3 Y. Kanda and T. Fukuyama, J. Am. Chem. Soc., 1993, 115, 8451.
- 4 T. Mukaiyama, N. Iwasawa, R. W. Stevens and T. Haga, *Tetrahedron*, 1984, **40**, 1381.
- 5 S. David, B. Estramereix, J.-C. Fischer and M. Thérisod, J. Chem. Soc., Perkin Trans. 1, 1982, 2131.
- 6 R. Baker, R. H. Boyes, D. M. P. Broom, M. J. O'Mahony and C. J. Swain, J. Chem. Soc., Perkin Trans. 1, 1987, 1613.
- 7 K. Mori and M. Itou, Liebigs Ann. Chem., 1992, 87.
- 8 L. A. Paquette, C. F. Sturino, X. Wang, J. C. Prodger and D. Koh, J. Am. Chem. Soc., 1996, 118, 5620.
- 9 E. J. Corey, D. Enders and M. G. Bock, Tetrahedron Lett., 1976, 7.
- 10 K. Horita, T. Yoshioka, T. Tanaka, Y. Oikawa and O. Yonemitsu, *Tetrahedron*, 1986, 42, 3021.
- 11 B. Neises and W. Steglich, Angew. Chem., Int. Ed. Engl., 1978, 17, 522.

Received in Cambridge, UK, 29th July 1997; 7/05481E