Thioether macrocycles as spacers for crystal engineering: synthesis and crystal structures of $[Ag_2([24]aneS_8)(CF_3SO_3)_2(MeCN)_2]_{\infty}$ and $[Ag([16]aneS_4)(BF_4)]_{\infty}([24]aneS_8 = 1,4,7,10,13,16,19,22-octathiacyclotetracosane; [16]aneS_4 = 1,5,9,13-tetrathiacyclohexadecane)$

Alexander J. Blake, Wan-Sheung Li, Vito Lippolis and Martin Schröder*

Department of Chemistry, The University of Nottingham, University Park, Nottingham, UK NG7 2RD

The polymeric complexes $[Ag_2([24]aneS_8)(CF_3SO_3)_2-(MeCN)_2]_{\infty}$ and $[Ag([16]aneS_4)(BF_4)]_{\infty}$ show infinite ladder and layered structures respectively, with the thioether crown controlling the multi-dimensional architecture.

The coordination chemistry of crown thioethers has been of great interest over the past decade.¹ Most studies have been focused on the coordination chemistry of these ligands to transition metal ions,¹⁻⁴ although very little information is available on Ag^I complexes with crown thioethers containing four or eight S-donor atoms.⁵ Parallel to this, the design of solidstate architectures has become an area of increasing interest,6-9 with attention focused predominantly upon the use of supramolecular contacts (particularly hydrogen bonding) between suitable organic molecules to generate multi-dimensional arrays and networks.⁶⁻⁹ In comparison, the design of inorganic networks,10-12 particularly polymeric metal complexes, is less well developed13 with most of the examples being based upon linear bridging ligands bound to tetrahedral metal ions such as Cu^I and Ag^{I,11,12,14} Few polymeric structures for thioether crown complexes have been reported, dimensional control being achieved mainly by variation of the counter-anion.^{2,5} We report herein two new polymeric thioether crown complexes of Ag^I whose multi-dimensional architecture is controlled by the thioether crowns building blocks.

Reaction of $[24]aneS_8$ with 2 equiv. of AgCF₃SO₃ in CH₂Cl₂–CH₃CN affords a white solid which can be recrystallised from CH₃CN–Et₂O.† A single crystal X-ray structure determination[‡] confirms the product to be a one-dimensional polymer, $[Ag_2([24]aneS_8)(CF_3SO_3)_2(MeCN)_2]_{\infty}$, in which each Ag^I ion is coordinated to four S-donors in a distorted tetrahedral geometry with S–Ag–S angles ranging from 85.83(5) to 127.36(5)° and Ag–S bond distances from 2.5400(14) to 2.627(2) Å. The four S-donors come from two different ligand molecules to generate an infinite ladder polymer along the *b* axis (Fig. 1). Within the ladder, pairs of symmetry-related Ag^I ions are coordinated between two macrocyclic ligands, so that all eight S-donors of each [24]aneS₈ molecule are engaged in coordination. Each metal ion is also a spiro centre, being the common atom of two almost perpendicular AgS₂C₂ rings. The macrocycle adopts a unique pattern of alternate *endo*- and *exo*-orientated S-donors, with 9 out of 12 torsion angles less than 90° and all the S–C–C–S torsion angles having a *gauche* arrangement. Stacks of CF₃SO₃⁻ ions and acetonitrile molecules are observed between the polymeric chains. Significantly, the use of NO₃⁻ as counter-anion leaves the structure of the polymeric Ag^I complex unchanged in [Ag₂([24]aneS₈)(NO₃)₂(H₂O)]_∞.

Reaction of [16]aneS₄ with AgBF₄ in 1:1 molar ratio in CH₃CN-CH₂Cl₂ affords a white powder which can be recrystallised from hot dmf.† A single crystal X-ray structure determination[‡] confirms the product to be a three-dimensional polymer, $[Ag([16]aneS_4)(BF_4)]_{\infty}$. Each Ag^I ion occupies a crystallographic $\overline{4}$ (S₄) site and is coordinated by four symmetry-equivalent S-donor atoms in a tetrahedral geometry with S-Ag-S angles of 119.44(2) and 90.98(3)° and Ag-S bond distances of 2.6121(7) Å. The donor atoms are derived from four symmetry-related [16]aneS4 molecules, each of which is bound to four different Ag^I ions (Fig. 2). The mcrocycle adopts a [4444] conformation with all the sulfur atoms *exo*-oriented. The [16]aneS₄ molecules lie in sheets perpendicular to the caxis, within which 24-membered rings can be recognised: these comprise four AgI ions and one S-C-C-C-S edge from four different thioether ligands (Fig. 2). Successive layers are stacked offset along c so that the [16]aneS₄ molecules and the 24-membered rings alternate, giving rise to channels within which the BF₄⁻ anions lie at the centres of the larger rings. This compound represents the first structurally characterized complex of Ag^I with an unfunctionalised tetradentate thioether

Fig. 1 Packing diagram for the $\{[Ag_2([24]aneS_8)]^{2+}\}_{\infty}$ polymeric chain. Counter-anion omitted for clarity. Carbon, small black circles, sulfur, white circles; silver, large grey circles.

Fig. 2 View of the packing diagram for the $\{[Ag([16]aneS_4)]^+\}_{\infty}$ polymeric complex along the *c* axis. Counter-anion omitted for clarity. Atoms shaded as in Fig. 1.

crown, although a polymeric structure has been reported with the ligand $(OH)_2$ -[16]aneS₄⁵ in which the OH groups play a major role in the crystal packing through extensive hydrogen bonding.

This work illustrates the potential of thioether crowns as building blocks for the synthesis of inorganic architectures using their *exo*-orientated S-donors. We are currently investigating how we may fine-tune the multi-dimensional architectures of polymeric Ag^I complexes with tetradentate thioether crowns.

We thank the EPSRC for financial support.

Footnotes and References

* E-mail: M.schroder@nott.ac.uk

† $[Ag_2([24]aneS_8)(CF_3SO_3)_2(MeCN)_2]_{\infty}$. To a well stirred solution of [24]aneS₈ (50 mg, 0.104 mmol) in CH₂Cl₂−CH₃CN (20 ml, 1 : 1 v/v) was added a solution of AgCF₃SO₃ (53.44 mg, 0.208 mmol) in CH₃CN (5 ml). The mixture was stirred at room temp. for 1 h. The white solid formed was filtered off and dried under reduced pressure (70 mg, 62.5% yield). Single crystals were obtained by recrystallization from CH₃CN–Et₂O.

 $[Ag([16]aneS_4)(BF_4)]_{\infty}$. To a well stirred solution of $[16]aneS_4$ (35.44 mg, 0.1195 mmol) in CH₂Cl₂–CH₃CN (15 ml, 1:1 v/v) was added a solution of AgBF₄ (23.26 mg, 0.1195 mmol) in CH₃CN (5 ml). The mixture was stirred at room temp. for 24 h. The white solid formed was filtered off and dried under reduced pressure (30 mg, 51.0% yield). Single crystals were obtained by recrystallization from hot dmf. Satisfactory elemental analyses were obtained for both compounds.

[‡] Stoe Stadi-4 four-circle diffractometer, graphite-monochromated Mo-K α radiation, ω - θ scans, $\theta_{max} = 25^{\circ}$. Both structures were solved using direct methods¹⁵ and all non-H atoms were located using subsequent difference Fourier methods.¹⁶ Hydrogen atoms were placed in calculated positions and thereafter allowed to ride on their parent atoms.

Crystal data for $[Ag_2([24]aneS_8)(CF_3SO_3)_2(MeCN)_2]_{\infty}$: $C_{22}H_{38}Ag_2F_6$ -N₂O₆S₁₀, M = 1076.88, monoclinic, space group $P2_1/c$ (no. 14), a = 13.285(2), b = 6.3340(10), c = 22.547(3) Å, $\beta = 91.721(14)^\circ$, *U* = 1890.7(3) Å³, *Z* = 2, *F*(000) = 1080, *D*_c = 1.892 g cm⁻³, μ(Mo-Kα) = 1.66 mm⁻¹. Colourless plate (0.07 × 0.21 × 0.25 mm), ψ-scan absorption corrections (*T*_{min} = 0.61, *T*_{max} = 0.81), 3344 unique reflections, of which 2255 had *I* ≥ 2σ(*I*). The weighting scheme *w*⁻¹ = [σ²(*F*_o²) + (0.0252*P*)² + 0.40*P*], *P* = [max(*F*_o², 0) + 2*F*_c²], was applied. At final convergence *R*₁ [*I* ≥ 2σ(*I*)] = 0.0431, *wR*₂ (all data) = 0.0874 for 218 refined parameters, *S* = 1.03, (Δ/σ)_{max} = -0.001, Δρ_{max} = 0.55 e Å⁻³.

Crystal data for [Ag([16]aneS₄(BF₄)]_∞: C₁₂H₂₄AgBF₄S₄, *M* = 491.23, tetragonal, space group $I\overline{4}$ (no. 82), *a* = 10.3955(14), *c* = 8.227(2) Å, *U* = 889.1(2) Å³, *Z* = 2, *F*(000) = 496, *D_c* = 1.835 g cm⁻³, μ (Mo-Kα) = 1.632 mm⁻¹. Colourless tablet (0.15 × 0.27 × 0.29 mm), ψ -scan absorption corrections (T_{min} = 0.614, T_{max} = 0.709), 778 unique reflections (R_{int} = 0.040), of which 767 had $I \ge 2\sigma(I)$. The weighting scheme $w^{-1} = [\sigma^2(F_o^2) + (0.0272P)^2 + 0.51P]$, *P* = [max(F_o^2 , 0) + 2 F_c^2] was adopted. At final convergence *R*₁ [$I \ge 2\sigma(I)$] = 0.0176, *wR*₂ (all data) = 0.0471 for 51 refined parameters, *S* = 1.07, ($\Delta'\sigma$)_{max} = 0.001, $\Delta\rho_{max}$ = 0.38 e Å⁻³. CCDC 182/573.

- A. J. Blake and M. Schröder, *Adv. Inorg. Chem.*, 1990, **35**, 1;
 S. C. Rawle and S. R. Cooper, *Struct. Bonding*, 1991, **72**, 1.
- 2 A. J. Blake, D. Collison, R. O. Gould, G. Reid and M. Schröder, J. Chem. Soc., Dalton Trans., 1993, 521.
- 3 H. J. Küppers, K. Wieghardt, Y. H. Tsay, C. Krüger, B. Nuber and J. Weiss, *Angew. Chem., Int. Ed. Engl.*, 1987, **26**, 575.
- 4 R. Alberto, W. Nef, A. Smith, T. A. Kaden, M. Neuburger, M. Zehender, A. Frey, U. Abram and P. A. Schubiger, *Inorg. Chem.*, 1996, **35**, 3420.
- 5 M. Munakata, L. P. Wu, M. Yamamoto, T. Kuroda-Sowa and M. Maekawa, J. Chem. Soc., Dalton Trans., 1995, 3215.
- 6 G. R. Desiraju, in *Crystal Engineering: Design of Organic Solids*, Elsevier, Amsterdam, 1989.
- 7 The Crystal as a Supramolecular Entity, ed. G. R. Desiraju, Wiley, Chichester, 1995.
- 8 G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311.
- 9 R. Robson, B. F. Abrahams, S. R. Batten, R. W. Gable, B. F. Hoskins and J. Liu, *Supramolecular Architecture*, ACS, Washington DC, 1992, ch. 19.
- 10 L. Carlucci, G. Ciani, D. M. Proserpio and A. Sironi, J. Chem. Soc., Chem., Commun., 1994, 2755.
- 11 S. B. Copp, K. T. Holman, J. O. S. Sangster, S. Subramaniam and M. J. Zaworotko, *J. Chem. Soc., Dalton Trans.*, 1995, 223 and references therein.
- B. F. Abrahams, S. R. Batten, H. Hamit, B. F. Hoskins and R. Robson, Angew. Chem., Int. Ed. Engl., 1996, 35, 4432; L. Carlucci, G. Ciani, D. M. Proserpio and A. Sironi, J. Am. Chem. Soc., 1995, 117, 4562;
 O. M. Yaghi and H. Li, J. Am. Chem. Soc., 1995, 117, 10401;
 B. F. Abrahams, S. R. Batten, H. Hamit, B. F. Hoskins and R. Robson, Chem. Commun., 1996, 1313; L. Carlucci, G. Ciani, D. M. Proserpio and A. Sironi, Chem. Commun., 1996, 1393.
- 13 M. Munakata, T. Kuroda-Sowa, M. Maekawa, A. Hirota and S. Kitagawa, *Inorg. Chem.*, 1995, **34**, 2705; M. Munakata, T. Kuroda-Sowa, M. Maekawa, A. Honda and S. Kitagawa, *J. Chem. Soc., Dalton Trans.*, 1994, 2771; J. R. Black, N. R. Champness, W. Levason and G. Reid, *Inorg. Chem.*, 1996, **35**, 4432.
- 14 A. J. Blake, N. R. Champness, S. S. M. Chung, W.-S. Li and M. Schröder, *Chem. Commun.*, 1997, 1005; A. J. Blake, N. R. Champness, A. N. Khlabystov, D. A. Lemenovskii, W.-S. Li and M. Schröder, *Chem. Commun.*, 1997, 1339; A. J. Blake, N. R. Champness, S. S. M. Chung, W.-S. Li and M. Schröder, *Chem. Commun.*, 1997, 1675.
- 15 G. M. Sheldrick, SHELXS-86, Acta Crystallogr., Sect. A, 1990, 46, 467.
- 16 G. M. Sheldrick, SHELXL-93, Universität Göttingen, 1993.
- Received in Cambridge, UK, 7th July 1997, 7/04796G