A terminal molybdenum carbide prepared by methylidyne deprotonation

Jonas C. Peters, Aaron L. Odom and Christopher C. Cummins*†

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

The carbide anion $[CMo{N(R)Ar}_3]^- [R = C(CD_3)_2CH_3, Ar = C_6H_3Me_2-3,5]$, is obtained by deprotonation of the corresponding methylidyne compound, $[HCMo{N(R)Ar}_3]$, and is characterized by X-ray diffraction as its {K(benzo-15-crown-5)_2}+ salt, thereby providing precedent for the carbon atom as a terminal substituent in transition-metal chemistry.

Recent work has shown that the molybdenum–nitrogen multiple bond in the nitride species $[NMo{N(R)Ar}_3]$ $[R = C(CD_3)_2CH_3, Ar = C_6H_3Me_2-3,5]$ is exceedingly strong, and that this complex is quite robust.^{1,2} Recognizing that the anionic carbide $[CMo{N(R)Ar}_3]$ – would be isoelectronic with $[NMo{N(R)Ar}_3]$, we set out to synthesize it. As described herein, a successful synthesis was accomplished *via* deprotonation of the d⁰ methylidyne complex $[HCMo{N(R)Ar}_3]$. Previously reported molecular carbide complexes feature carbon atoms with at least two nearest neighbors.^{3–10}

Three-coordinate $[Mo{N(R)Ar}_3]$ **1** was treated with 99% ¹³C carbon monoxide to give the paramagnetic ($\mu_{eff} = 1.73 \,\mu_B$) carbonyl complex $[(O^{13}C)Mo\{N(R)Ar\}_3]$ 2 $(v_{CO} 1797 \text{ cm}^{-1})$ as a brown solid in 88% yield.[‡]§ One-electron reduction of 2 was effected with sodium amalgam in tetrahydrofuran (thf) giving $[(NaO^{13}C)Mo\{N(R)Ar\}_3]_2$ **3** $[\delta(^{13}C)$ 243.0] in essentially quantitative yield. 3 was obtained either as a solvent-free dimer or as an ether or thf solvate. In situ generated 3 was found to be sufficiently pure for synthetic purposes. Reaction of 3 with pivaloyl chloride¹¹ provided the 'carbido pivalate' complex $[Bu^{t}C(O)O(^{13}C)Mo\{N(R)Ar\}_{3}]$ 4 $[\delta(^{13}C) 2\hat{1}7.2]$ in 82% yield as a beige crystalline solid. Removal of the pivalate moiety in 4 was effected by treatment with sodium in thf giving, according to ¹³C NMR analysis, a mixture of 'sodium carbide' [Na(¹³C- $Mo{N(R)Ar}_{3}_{2}$ **5** $[\delta^{(13C)} 474.2]$, methylidyne $[H^{(13C)}Mo{N-1}]_{3}$ (R)Ar $_3$ 6 [δ (¹³C) 287.5, ¹J_{CH} 157 Hz] and 3. Treatment of the

mixture with an excess of acetonitrile converted **5** to **6**, solubilized **3** and precipitated **6** in essentially pure form. Methylidyne **6**, an off-white solid, was isolated by this procedure in 53% yield from **2**. Several other routes to the terminal methylidyne functionality have been documented.^{12–17}

Deprotonation of **6** was effected by benzylpotassium in thf,¹⁸ giving the potassium–molybdenum carbido complex $[K(^{13}C)Mo\{N(R)Ar\}_3]_2$ **7** $[\delta(^{13}C)$ 494.5]^{19,20} in 69% yield after recrystallization from pentane–thf.** In thf solution **7** presumably exists as a thf solvate, but the indicated thf-free, benzene-soluble dimer stabilized by intramolecular K⁺–arene interactions²¹ is readily obtained. Dimer **7** has been shown by X-ray crystallography to possess a central K₂(carbide)₂ square array situated about a crystallograpic inversion center.^{22,23}

Treatment in thf of the potassium–molybdenum carbide **7** with 2,2,2-crypt²⁴ led to formation of the thf-soluble, benzeneinsoluble salt [K(2,2,2-crypt)][¹³CMo{N(R)Ar}₃] **8** [δ (¹³C) 482.8].^{††} The ¹H NMR spectrum of **8** in [²H₈]thf showed the expected four sharp resonances for the threefold-symmetric anion, along with the three signals characteristic of the [K(2,2,2-crypt)]⁺ cation. The curious fact that the ¹³C NMR signal for the carbido carbon in **8** is broad ([²H₈]thf, $\Delta v_{1/2}$ 1400 Hz) contrasts with the situation for **7**, which (in C₆D₆) exhibits a sharp signal.

A salt of the $[CMo{N(R)Ar}_3]^-$ anion amenable to X-ray crystallography, **9**, was obtained upon treatment of **7** with 2 equiv. (per K) of benzo-15-crown-5.²⁵ Crystals of salt **9**, which exhibited solubility characteristics similar to **8**, were obtained from thf–pentane.^{‡‡} The X-ray diffraction study of **9** revealed discrete and separate $[CMo{N(R)Ar}_3]^-$ anions and $[K(benzo-15-crown-5)_2]^+$ cations (Fig. 1).§§ The molybdenum–carbon distance in **9** was found to be 1.713(9) Å, at the low end of the known range for Mo–C multiple bonds.²⁶ The three N(R)Ar

Scheme 1

Fig. 1 Structural representation of [K(benzo-15-crown-5)2][CMo{N-(R)Ar₃] 9 with thermal ellipsoids at the 35% probability level. Selected bond lengths (Å) and angles (°): Mo(1)-C(1) 1.713(9), Mo(1)-N(1) 2.008(6), Mo(1)–N(2) 2.010(7), Mo(1)–N(3) 2.013(6); C(1)–Mo(1)–N(1) 102.7(3), C(1)–Mo(1)–N(2) 103.9(3), N(1)–Mo(1)–N(2) 114.7(3), C(1)-Mo(1)-N(3) 103.8(3), N(1)-Mo(1)-N(3) 116.9(3), N(2)-Mo(1)-N(3) 112.6(3).

ligands in $[CMo{N(R)Ar}_3]^-$ adopt a propeller motif with the aryl rings π stacked²⁷ on one side of the molecule and the *tert*butyl groups on the other side forming a protective 'pocket' about the Mo-C multiple bond. The gross structural and conformational features of $[CMo{N(R)Ar}_3]^-$ were anticipated based on structures of the related nitrido and phosphido derivatives $[NMo\{N(Bu^t)Ph\}_3]^1$ and $[PMo\{N(R)Ar\}_3]^{.28}$

For funding this work we thank the Packard foundation, the Alfred P. Sloan Foundation, the National Science Foundation (CAREER Award CHE = 9501992), 3M, DuPont, and Union Carbide. J. C. P. is grateful for a Department of Defense Graduate Research Fellowship. This work is dedicated to the memory of Professor Jeremy K. Burdett.

Footnotes and References

* E-mail: ccummins@mit.edu

† Alfred P. Sloan Fellow, 1997-2000.

‡ All manipulations were carried out under an atmosphere of dry nitrogen using solvents purified by standard methods.

§ Other data for 2: ²H NMR (46 MHz, pentane, 25 °C); δ 8.0 [s, $\Delta v_{1/2}$ 14 Hz, C(CD₃)₂]; μ_{eff} (300 MHz, 25 °C, C₆D₆) = 2.2 μ_{B} . FTIR (heptane, KBr); v(¹³CO) 1797 cm⁻¹. Anal. Calc. for C₃₇H₃₆D₁₈MoN₃O: C, 66.24; H, 8.11; N, 6.26. Found: C, 65.85; H, 8.44; N, 6.19%

The reaction to produce 4 was carried out using 6.5 mmol of 2. Other data for 4: ¹H NMR (300 MHz, C₆D₆, 25 °C); δ 6.67 (s, 3 H, C₆H₃Me₂, p-H), 6.09 (s, 6 H, C₆H₃Me₂ o-H), 2.10 (s, 18 H, C₆H₃Me₂), 1.50 [s, 9 H, $C(CD_3)_2CH_3$], 1.22 [s, 9 H, $C(CH_3)_3$]. Anal. Calc. for $C_{42}H_{45}D_{18}MoN_3O_2$: C, 66.73; H, 8.40; N, 5.56. Found: C, 66.64; H, 8.24; N, 5.79%.

|| The reaction to produce 6 was carried out using 2.66 mmol of 4. Other data for **6**: ¹H NMR (300 MHz, C₆D₆, 25 °C); δ 6.64 (s, 3 H, C₆H₃Me₂, p-H), 6.00 (s, 6 H, C₆H₃Me₂, o-H), 5.66 [d, 1 H, Mo(CH), ¹J_{CH} 157 Hz], 2.07 (s, 18 H, $C_6H_3Me_2$), 1.49 [s, 9 H, $C(CD_3)_2CH_3$]. Anal. Calc. for $C_{37}H_{37}D_{18}MoN_3$: C, 67.75; H, 8.45; N, 6.41. Found: C, 67.61; H, 8.29; N, 6.72%

** The reaction to produce 7 was carried out using 1.164 mmol of 6. Other data for 7: ¹H NMR (300 MHz, C₆D₆, 25 °C); δ 6.86 (s, 6 H, C₆H₃Me₂, o-H), 6.60 (s, 3 H, C₆H₃Me₂, p-H), 2.22 (s, 18 H, C₆H₃Me₂), 1.48 [s, 9 H, C(CD₃)₂CH₃] ¹H NMR (300 MHz, [²H₈]thf, 25 °C); δ 6.38 (sh s, 3 H, $C_6H_3Me_2$, *p*-H), 6.25 (vbr s, 6 H, $C_6H_3Me_2$, *o*-H), 2.04 (sh s, 18 H, $C_6H_3Me_2$), 1.31 [br s, 9 H, $C(CD_3)_2CH_3$]. Anal. Calc. for C37H36D18KN3M0: C, 64.04; H, 7.84; N, 6.05. Found: C, 64.71; H, 7.59; N, 5.85%.

†† The reaction to produce 8 was carried out using 0.05 mmol of 7. Other *data* for 8: ¹H NMR (300 MHz, [²H₈]thf, 25 °C); δ 6.26 (s, 3 H, C₆H₃Me₂, p-H), 5.71 (vbr s, 6 H, C₆H₃Me₂, o-H), 3.58 (m, 12 H, crypt), 3.53 (m, 12 H, crypt), 2.53 (m, 12 H, crypt), 1.92 (s, 18 H, C₆H₃Me₂), 1.50 [s, 9 H, $C(CD_3)_2CH_3].$

^{‡‡} The reaction to produce 9 was carried out using 0.21 mmol of 7. Other *data* for 9: ¹H NMR (300 MHz, $[^{2}H_{8}]$ thf, 25 °C); δ 6.85 (m, 8 H, crown aryl), 6.60 (s, 3 H, C₆H₃Me₂, p-H), 5.81 (br s, 6 H, C₆H₃Me₂, o-H), 3.5-4.1 (m, 16 H, crown methylene), 2.06 (s, 18 H, C₆H₃Me₂), 1.36 [s, 9 H, C(CD₃)₂(CH₃)]. Anal. Calc. for C₆₅H₅₂D₁₈KMoN₃O₁₀: C, 63.44; H, 7.70; N 3.42. Found: C, 62.83; H, 7.72; N, 3.36%

§§ Details of the X-ray diffraction study of 9: monoclinic, space group $P2_1/n, a = 14.094(4), b = 31.815(8), c = 17.589(7) \text{ Å}, \beta = 97.60(2)^\circ, U$ = 7818(4) Å³, Z = 4; data/parameter ratio = 10.1, R_1 = 0.0829, wR_2 = 0.1650, GOF on F^2 = 1.083; residuals based on $I > 2\sigma(I)$. CCDC 182/596.

- 1 C. E. Laplaza, M. J. A. Johnson, J. C. Peters, A. L. Odom, E. Kim, C. C. Cummins, G. N. George and I. J. Pickering, J. Am. Chem. Soc., 1996. 118. 8623
- 2 C. E. Laplaza and C. C. Cummins, Science, 1995, 268, 861.
- 3 M. H. Chisholm, C. E. Hammond, V. J. Johnston, W. E. Streib and J. C. Huffman, J. Am. Chem. Soc., 1992, 114, 7056.
- 4 K. G. Caulton, R. H. Cayton, M. H. Chisholm, J. C. Huffman, E. B. Lobkovsky and Z. Xue, Organometallics, 1992, 11, 321.
- 5 R. L. Miller, P. T. Wolczanski and A. L. Rheingold, J. Am. Chem. Soc., 1993, 115, 10 422.
- 6 D. R. Neithamer, R. E. LaPointe, R. A. Wheeler, D. S. Richeson, G. D. Van Duyne and P. T. Wolczanski, J. Am. Chem. Soc., 1989, 111, 9056.
- 7 D. Mansuy, J.-P. Lecomte, J.-C. Chottard and J.-F. Bartoli, Inorg. Chem., 1981, 20, 3119.
- 8 V. L. Goedkin, M. R. Deakin and L. A. Bottomley, J. Chem. Soc., Chem. Commun., 1982, 607.
- 9 S. L. Latesky and J. P. Selegue, J. Am. Chem. Soc., 1987, 109, 4731.
- 10 M. Etienne, P. S. White and J. L. Templeton, J. Am. Chem. Soc., 1991, 113. 2324.
- 11 E. M. Carnahan, J. D. Protasiewicz and S. J. Lippard, Acc. Chem. Res., 1993, 26, 90.
- 12 G. M. Jamison, A. E. Bruce, P. S. White and J. L. Templeton, J. Am. Chem. Soc., 1991, 113, 5057.
- 13 M. R. Churchill, A. L. Rheingold and H. J. Wasserman, Inorg. Chem., 1981. 20, 3392
- 14 K.-Y. Shih, K. Totland, S. Seidel and R. R. Schrock, J. Am. Chem. Soc., 1994, 116, 12 103.
- 15 J. Manna, R. J. Kuk, R. F. Dallinger and M. D. Hopkins, J. Am. Chem. Soc., 1994, 116, 9793
- 16 P. R. Sharp, S. J. Holmes, R. R. Schrock, M. R. Churchill and H. J. Wasserman, J. Am. Chem. Soc., 1981, 103, 965.
- M. H. Chisholm, K. Folting, D. M. Hoffman and J. C. Huffman, J. Am. 17 Chem. Soc., 1984, 106, 6794.
- 18 R. R. Schlosser and J. Hartmann, Angew. Chem., Int. Ed. Engl., 1973, 12, 508.
- 19 C. P. Casey, M. W. Meszaros, P. J. Fagan, R. K. Bly, S. R. Marder and E. A. Austin, J. Am. Chem. Soc., 1986, 108, 4043; see this reference and ref. 20 for a ¹³C NMR shift of *ca*. 500 ppm.
- 20 C. P. Casey, M. A. Gohdes and M. W. Meszaros, Organometallics, 1986, 5, 196.
- 21 E. Weiss, Angew. Chem., Int. Ed. Engl., 1993, 32, 1501.
- 22 J. C. Peters, A. L. Odom and C. C. Cummins, unpublished work.
 23 M. G. Fickes, A. L. Odom and C. C. Cummins, *Chem. Commun.*, 1997, this issue; see this paper for structural data pertaining to [Na{NNb[N-(R)Ar]₃}]₂, which is analogous structurally to [K{CMo[N(R)Ar]₃}]₂.
- 24 L. F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press, Cambridge, 1989.
- 25 Comprehensive Supramolecular Chemistry, ed. G. W. Gokel, Pergamon, New York, 1996.
- 26 W. A. Nugent and J. M. Mayer, Metal-Ligand Multiple Bonds, Wiley, New York, 1988.
- 27 C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525
- 28 C. E. Laplaza, W. M. Davis and C. C. Cummins, Angew. Chem., Int. Ed. Engl., 1995, 34, 2042.

Received in Bloomington, IN, USA, 17th June 1997; 7/04251E