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A terminal molybdenum carbide prepared by methylidyne deprotonation

Jonas C. Peters, Aaron L. Odom and Christopher C. Cummins*†

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

The carbide anion [CMo{N(R)Ar}3]2 [R = C(CD3)2CH3, Ar
= C6H3Me2-3,5], is obtained by deprotonation of the
corresponding methylidyne compound, [HCMo{N(R)Ar}3],
and is characterized by X-ray diffraction as its {K(benzo-
15-crown-5)2}+ salt, thereby providing precedent for the
carbon atom as a terminal substituent in transition-metal
chemistry.

Recent work has shown that the molybdenum–nitrogen multiple
bond in the nitride species [NMo{N(R)Ar}3]
[R = C(CD3)2CH3, Ar = C6H3Me2-3,5] is exceedingly strong,
and that this complex is quite robust.1,2 Recognizing that the
anionic carbide [CMo{N(R)Ar}3]2would be isoelectronic with
[NMo{N(R)Ar}3], we set out to synthesize it. As described
herein, a successful synthesis was accomplished via deprotona-
tion of the d0 methylidyne complex [HCMo{N(R)Ar}3].
Previously reported molecular carbide complexes feature
carbon atoms with at least two nearest neighbors.3–10

Three-coordinate [Mo{N(R)Ar}3] 1 was treated with 99%
13C carbon monoxide to give the paramagnetic (meff = 1.73 mB)
carbonyl complex [(O13C)Mo{N(R)Ar}3] 2 (nCO 1797 cm21)
as a brown solid in 88% yield.‡§ One-electron reduction of 2
was effected with sodium amalgam in tetrahydrofuran (thf)
giving [(NaO13C)Mo{N(R)Ar}3]2 3 [d(13C) 243.0] in essen-
tially quantitative yield. 3 was obtained either as a solvent-free
dimer or as an ether or thf solvate. In situ generated 3 was found
to be sufficiently pure for synthetic purposes. Reaction of 3 with
pivaloyl chloride11 provided the ‘carbido pivalate’ complex
[ButC(O)O(13C)Mo{N(R)Ar}3] 4 [d(13C) 217.2] in 82% yield
as a beige crystalline solid.¶ Removal of the pivalate moiety in
4 was effected by treatment with sodium in thf giving, according
to 13C NMR analysis, a mixture of ‘sodium carbide’ [Na(13C-
)Mo{N(R)Ar}3]2 5 [d(13C) 474.2], methylidyne [H(13C)Mo{N-
(R)Ar}3] 6 [d(13C) 287.5, 1JCH 157 Hz] and 3. Treatment of the

mixture with an excess of acetonitrile converted 5 to 6,
solubilized 3 and precipitated 6 in essentially pure form.
Methylidyne 6, an off-white solid, was isolated by this
procedure in 53% yield from 2.∑ Several other routes to the
terminal methylidyne functionality have been documen-
ted.12–17

Deprotonation of 6 was effected by benzylpotassium in thf,18

giving the potassium–molybdenum carbido complex
[K(13C)Mo{N(R)Ar}3]2 7 [d(13C) 494.5]19,20 in 69% yield after
recrystallization from pentane–thf.** In thf solution 7 pre-
sumably exists as a thf solvate, but the indicated thf-free,
benzene-soluble dimer stabilized by intramolecular K+–arene
interactions21 is readily obtained. Dimer 7 has been shown by
X-ray crystallography to possess a central K2(carbide)2 square
array situated about a crystallograpic inversion center.22,23

Treatment in thf of the potassium–molybdenum carbide 7
with 2,2,2-crypt24 led to formation of the thf-soluble, benzene-
insoluble salt [K(2,2,2-crypt)][13CMo{N(R)Ar}3] 8 [d(13C)
482.8].†† The 1H NMR spectrum of 8 in [2H8]thf showed the
expected four sharp resonances for the threefold-symmetric
anion, along with the three signals characteristic of the
[K(2,2,2-crypt)]+ cation. The curious fact that the 13C NMR
signal for the carbido carbon in 8 is broad ([2H8]thf, Dn1/2 1400
Hz) contrasts with the situation for 7, which (in C6D6) exhibits
a sharp signal.

A salt of the [CMo{N(R)Ar}3]2 anion amenable to X-ray
crystallography, 9, was obtained upon treatment of 7 with 2
equiv. (per K) of benzo-15-crown-5.25 Crystals of salt 9, which
exhibited solubility characteristics similar to 8, were obtained
from thf–pentane.‡‡ The X-ray diffraction study of 9 revealed
discrete and separate [CMo{N(R)Ar}3]2 anions and [K(benzo-
15-crown-5)2]+ cations (Fig. 1).§§ The molybdenum–carbon
distance in 9 was found to be 1.713(9) Å, at the low end of the
known range for Mo–C multiple bonds.26 The three N(R)Ar
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ligands in [CMo{N(R)Ar}3]2 adopt a propeller motif with the
aryl rings p stacked27 on one side of the molecule and the tert-
butyl groups on the other side forming a protective ‘pocket’
about the Mo–C multiple bond. The gross structural and
conformational features of [CMo{N(R)Ar}3]2were anticipated
based on structures of the related nitrido and phosphido
derivatives [NMo{N(But)Ph}3]1 and [PMo{N(R)Ar}3].28
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Footnotes and References

* E-mail: ccummins@mit.edu
† Alfred P. Sloan Fellow, 1997–2000.
‡ All manipulations were carried out under an atmosphere of dry nitrogen
using solvents purified by standard methods.
§ Other data for 2: 2H NMR (46 MHz, pentane, 25 °C); d 8.0 [s, Dn1/2 14
Hz, C(CD3)2]; meff (300 MHz, 25 °C, C6D6) = 2.2 mB. FTIR (heptane, KBr);
n (13CO) 1797 cm21. Anal. Calc. for C37H36D18MoN3O: C, 66.24; H, 8.11;
N, 6.26. Found: C, 65.85; H, 8.44; N, 6.19%.
¶ The reaction to produce 4 was carried out using 6.5 mmol of 2. Other data
for 4: 1H NMR (300 MHz, C6D6, 25 °C); d 6.67 (s, 3 H, C6H3Me2, p-H),
6.09 (s, 6 H, C6H3Me2 o-H), 2.10 (s, 18 H, C6H3Me2), 1.50 [s, 9 H,
C(CD3)2CH3], 1.22 [s, 9 H, C(CH3)3]. Anal. Calc. for C42H45D18MoN3O2:
C, 66.73; H, 8.40; N, 5.56. Found: C, 66.64; H, 8.24; N, 5.79%.
∑ The reaction to produce 6 was carried out using 2.66 mmol of 4. Other data
for 6: 1H NMR (300 MHz, C6D6, 25 °C); d 6.64 (s, 3 H, C6H3Me2, p-H),
6.00 (s, 6 H, C6H3Me2, o-H), 5.66 [d, 1 H, Mo(CH), 1JCH 157 Hz], 2.07 (s,
18 H, C6H3Me2), 1.49 [s, 9 H, C(CD3)2CH3]. Anal. Calc. for
C37H37D18MoN3: C, 67.75; H, 8.45; N, 6.41. Found: C, 67.61; H, 8.29; N,
6.72%.
** The reaction to produce 7 was carried out using 1.164 mmol of 6. Other
data for 7: 1H NMR (300 MHz, C6D6, 25 °C); d 6.86 (s, 6 H, C6H3Me2,
o-H), 6.60 (s, 3 H, C6H3Me2, p-H), 2.22 (s, 18 H, C6H3Me2), 1.48 [s, 9 H,
C(CD3)2CH3] 1H NMR (300 MHz, [2H8]thf, 25 °C); d 6.38 (sh s, 3 H,
C6H3Me2, p-H), 6.25 (vbr s, 6 H, C6H3Me2, o-H), 2.04 (sh s, 18 H,
C6H3Me2), 1.31 [br s, 9 H, C(CD3)2CH3]. Anal. Calc. for
C37H36D18KN3Mo: C, 64.04; H, 7.84; N, 6.05. Found: C, 64.71; H, 7.59; N,
5.85%.
†† The reaction to produce 8 was carried out using 0.05 mmol of 7. Other
data for 8: 1H NMR (300 MHz, [2H8]thf, 25 °C); d 6.26 (s, 3 H, C6H3Me2,
p-H), 5.71 (vbr s, 6 H, C6H3Me2, o-H), 3.58 (m, 12 H, crypt), 3.53 (m, 12

H, crypt), 2.53 (m, 12 H, crypt), 1.92 (s, 18 H, C6H3Me2), 1.50 [s, 9 H,
C(CD3)2CH3].
‡‡ The reaction to produce 9 was carried out using 0.21 mmol of 7. Other
data for 9: 1H NMR (300 MHz, [2H8]thf, 25 °C); d 6.85 (m, 8 H, crown
aryl), 6.60 (s, 3 H, C6H3Me2, p-H), 5.81 (br s, 6 H, C6H3Me2, o-H), 3.5–4.1
(m, 16 H, crown methylene), 2.06 (s, 18 H, C6H3Me2), 1.36 [s, 9 H,
C(CD3)2(CH3)]. Anal. Calc. for C65H52D18KMoN3O10: C, 63.44; H, 7.70;
N 3.42. Found: C, 62.83; H, 7.72; N, 3.36%.
§§ Details of the X-ray diffraction study of 9: monoclinic, space group
P21/n, a = 14.094(4), b = 31.815(8), c = 17.589(7) Å, b = 97.60(2)°, U
= 7818(4) Å3, Z = 4; data/parameter ratio = 10.1, R1 = 0.0829, wR2

= 0.1650, GOF on F2 = 1.083; residuals based on I > 2s(I). CCDC
182/596.
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Fig. 1 Structural representation of [K(benzo-15-crown-5)2][CMo{N-
(R)Ar}3] 9 with thermal ellipsoids at the 35% probability level. Selected
bond lengths (Å) and angles (°): Mo(1)–C(1) 1.713(9), Mo(1)–N(1)
2.008(6), Mo(1)–N(2) 2.010(7), Mo(1)–N(3) 2.013(6); C(1)–Mo(1)–N(1)
102.7(3), C(1)–Mo(1)–N(2) 103.9(3), N(1)–Mo(1)–N(2) 114.7(3),
C(1)–Mo(1)–N(3) 103.8(3), N(1)–Mo(1)–N(3) 116.9(3), N(2)–Mo(1)–
N(3) 112.6(3).
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