Enantioselective syntheses of α -methylene butyrolactones *via* asymmetric aminocarbonylation of tungsten-prop-2-ynyl compounds

Lin Hung Shiu,^a Sue-Lein Wang,^a Ming-Jung Wu^b and Rai-Shung Liu^{*a}

^a Department of Chemistry, National Tsing Hua University, Hsinchu, 30043, Taiwan, ROC ^b Department of Chemistry, Kaoshiung Institute of Medical College, Kaohsiung, Taiwan, ROC

A tungsten- η^1 -vinylprop-2-ynyl compound undergoes enantioselective aminocarbonylation to afford an optically pure tungsten- π - γ -lactone; this π -allyl complex is useful for the efficient synthesis of optically pure α -methylene butyrolactone.

In the last twenty years, utilization of stoichiometric transitionmetal reagents in organic syntheses has undergone considerable progress.^{1–3} The unique electronic properties of transition metals can direct and facilitate carbon-carbon bond formation of unusual types, providing easy access to useful organic substructures.^{1–3} Nevertheless, most of these reactions^{1–3} are carried out with racemic organometallic reagents although naturally occurring compounds often exist in optically pure forms. $[M(\eta^5-C_5H_5)(CO)_2(\pi-allyl)]$ (M = Mo, W) complexes have proved to be very useful in organic synthesis.^{4,5} In this laboratory, we recently reported the use of complexes of this type for stereoselective syntheses of various oxygen heterocycles, 1,3-diols and 1,3,5-triols.⁶ To further enhance the synthetic applications of these π -allyl complexes, we report herein an enantioselective aminocarbonylation of tungstenvinylprop-2-ynyl complexes to afford an optically pure tungsten $-\pi$ - γ -lactone that can be elaborated for asymmetric synthesis of α -methylene butyrolactones.

Although tungsten-prop-2-ynyl complexes are prone to alkoxycarbonylation^{6b,c} to yield π -2-alkoxycarbonylallyl complexes **2** [Scheme 1, eqn. (1)], attempts to use chiral secondary alcohols such as (+)-menthol and (+)-neomenthol to induce enantioselective alkoxycarbonylation of **1** were unsuccessful.

The resulting products 2 consisted of 1:1 diastereomeric mixtures that were inseparable by fractional crystallization and column chromatography. We found that (S)-4-phenyl-2,5oxazolidinone⁷ 3 was an effective chiral auxiliary for enantioselective aminocarbonylation of **1**. In a typical operation, CF_3SO_3H acidification of 1 (ca. 1.50 g) in cold diethyl ether yielded a dark orange precipitate A, presumbly being containing η^2 -vinylallene cations.⁸ After replacement of diethyl ether with THF, precipitate A was treated with the sodium oxazolidinonate 3 (1.2 equiv.) at -40 °C and 15-crown-5 (1.2 equiv.), followed by slowly warming the solution to 0 °C (ca. 12 h), yielding a mixture of **4a** { $[\alpha]_D$ -53.4 (*c* 0.5, C₆H₆)} and **4b** { $[\alpha]_D$ 282.1 (*c* 0.5, C₆H₆)} in 81% yield (**4a/4b** = 3.8). Further separation of these two diastereomers on a silica column gave 4a and 4b in 51 and 16% yields, respectively. In this aminocarbonylation, 3 initially attacks the coordinated carbonyl of A to yield tungsten- η^1 -aminocarbonyl species **B** which subsequently undergoes insertion of the aminocarbonyl group into its central allene carbon, yielding the two isomers 4a,b. The crystal structure of 4a has been determined by an X-ray diffraction study[†] to clarify its absolute configuration; the ORTEP drawing is shown in Fig. 1.

As shown in Scheme 2, further treatment of **4a** with CF₃SO₃H (1.1 equiv.) in cold ether (-40 °C) produced an orange precipitate C; subsequent hydrolysis of this salt with a saturated Na₂CO₃ solution yielded an optically active π -ε-lactonylallyl complex **5** {[α]_D 157.8 (c 0.5, C₆H₆)} in 80% yield. Fig. 2 shows the the crystal structure† of this optically active complex **5** which has an *anti*-configuration, *i.e.* the methyl group lies away from W(η^{5} -C₅H₅)(CO)₂ fragment. The configuration of the tungsten– π -allyl fragment of **5** is retained relative to that of **2a**. To rationalize the stereochemical transformation of **4a** into **5**, we propose that η^{4} -*s*-*trans*-diene C was first formed in the acidification of **4a** with CF₃SO₃H; subsequent attack of water at the η^{4} -diene intermediate C occurs

Fig. 1 ORTEP drawing of the optically active tungsten–π-allyl complex **4a**. Pertinent bond lengths (Å): W–C(8) 2.252(7), W–C(9) 2.251(6), W–C(10) 2.321(6), C(8)–C(9) 1.427(9), C(9)–C(10) 1.411(8), C(10)–C(11) 1.459(9), C(11)–C(12) 1.320(10).

Chem. Commun., 1997 2055

Scheme 2

regioselectively at the C(4)-carbon opposite $W(\eta^5-C_5H_5)(CO)_2$ to yield an α -hydroxyallyl complex **D**. In aqueous Na₂CO₃ species **D** is prone to undergo base-catalyzed intramolecular lactonization, yielding the π -anti-allyl stereoisomer **5**.

To realize the synthetic utility of this asymmetric aminocarbonylation, compound **5** was sequentially treated with NOBF₄ (1.0 equiv.) and NaI (1.0 equiv.) in MeCN to generate the W(η^{5} -C₅H₅)(NO)I derivative **E** that functions as an allyl anion;⁹ this anion reacted *in situ* with RCHO (R = Ph, Prⁱ) to afford optically active α -methylene butyrolactones **6a** {[α]_D -71.1 (*c* 0.5, C₆H₆)} and **6b** {[α]_D -90.2 (*c* = 0.5, C₆H₆)} in 62 and 66% yields, respectively. The ee values of **6a** and **6b** were 93 and 94% according to HPLC analysis (column: Chirasphere). Following the same procedure, the chiral π -allyl complex **4b** was converted to π -allyl- γ -lactone **7** {[α]_D -157.2 (*c* 0.5,

Fig. 2 ORTEP drawing of the optically active tungsten $-\pi$ - γ -lactone **5**. Pertinent band lengths (Å): W–C(10) 2.292(15), W–C(11) 2.241(14), W–C(14) 2.330(16), C(10)–C(11) 1.392(15), C(11)–C(14) 1.407(24), C(12)–O(6) 1.201(22).

 C_6H_6) in 71% yield. Sequential treatment of **7** with NOBF₄ and NaI, and then RCHO afforded α -methylene butyrolactones **8a** {[α]_D 70.3 (c = 0.5, C_6H_6)} and **8b** {[α]_D 90.4 (c 0.5, C_6H_6)} in 60 and 61% yields, respectively. HPLC analyses of **8a** and **8b** gave the ee values of 92 and 94%, respectively. Herein, a chairlike-transition state **F** is likely involved to control the stereochemistry of the products. We previously reported^{6b} that the racemic form of **6a** (or **8a**) could also be produced from the π -syn- γ -lactone **9** following the same operation; the reaction mechanism was similarly elucidated to involve the transition state **F**.^{6b} An interesting observation of this study is that two π -anti and -syn-stereoisomers **5** and **9** have the same transition states **F** for generation of α -methylene- γ -lactone **6a** (or **8a**).

Footnotes and References

† *Crystal data*: **4a**: monoclinic, space group *P*2₁, *a* = 8.9928(2), *b* = 9.4679(2), *c* = 12.0133(2) Å, β = 93.881(3)°; *U* = 1020.5(4) Å³, *Z* = 2. Final *R* = 0.0170, $R_w = 0.0187$ for 2381 reflections with *I* > 3.0σ(*I*) out of 2531 unique reflections.

5: monoclinic, space group $P2_1$, a = 8.8390(2), b = 10.8836(3), c = 13.6346(4) Å, $\beta = 101.23(2)^\circ$, U = 1286.53(8) Å³, Z = 8. Each assymmetric unit contains two independent molecules. Final R = 0.0360, $R_w = 0.0374$ for 3191 reflections with $I > 3.0\sigma(I)$ out of 3902 unique reflections. CCDC 182/604.

- 1 Advances in Metal–Organic Chemistry, ed. L. S. Liebeskind, JAI Press Inc., Greenwich, CT, 1989–1996, vol. 1–5.
- 2 S. G. Davies, Aldrichim. Acta, 1990, 31.
- 3 L. S. Hegedus, *Transition Metals in the Synthesis of Complex Organic Molecules*, University Science Books, Mill Valley, CA, 1994, ch. 4, p. 103.
- 4 A. J. Pearson, Synlett, 1990, 10.
- 5 A. J. Pearson, in *Comprehensive Organometallic Chemistry*, ed. G Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1995, vol. 12, p. 637.
- 6 (a) W.-J. Vong, S.-M. Peng, S.-H. Lin, W.-J. Lin and R.-S. Liu, J. Am. Chem. Soc. 1991, **113**, 573; (b) C.-C. Chen, J.-S. Fan, S.-J. Shieh, G.-H. Lee, S.-M. Peng, S.-L. Wang and R.-S. Liu, J. Am. Chem. Soc., 1996, **118**, 9279.
- 7 D. A. Evans, F. Urpi, T. C. Somers, J. S. Clark and M. T. Bilodeau, J. Am. Chem. Soc., 1990, 112, 8215.
- 8 M.-H. Cheng, Y.-H. Ho, G.-H. Lee, S.-M. Peng, S.-Y. Chu and R.-S. Liu., Organometallics, 1994, 13, 4082.
- 9 J. W. Faller and D. L. Linebarrier, J. Am. Chem. Soc., 1989, 111, 1939;
 J. W. Faller, J. A. John and M. R. Mazzier, *Tetrahedron Lett.*, 1989, 31, 1769.

Received in Cambridge, UK, 29th August, 1997; 7/06309A