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Reactions of 1,3,5-triazine with organolithium compounds yielding
1,4-dihydrotriazines or the ring-opened products, a
3-lithio-1,3,5,7-tetraazaheptatriene or -1,3,5-triazaheptatriene†

Willem M. Boesveld, Peter B. Hitchcock and Michael F. Lappert*

The Chemistry Laboratory, University of Sussex, Falmer, Brighton, UK BN1 9QJ

1,3,5-Triazine 1 reacts with the lithium alkyl LiRA
(RA = CHR2, CH2R, Me, Bun or Ph; R = SiMe3) to give
1,4-adducts which on hydrolysis yield the first simple
1,4-dihydrotriazines; however, 1 with LiNR2 or LiCR3(thf)2
gives the crystalline ring-opened 3-lithio-1,3,5,7-tetraaza-
heptatriene 5 or -1,3,5-triazaheptatriene 6
[Li{RNC(H)NC(H)NC(H)ER}]n(m-L) (E = N, n = 3 and L
is absent 5, or E = CR, n = 2 and L = thf = tetra-
hydrofuran 6).

As part of our study of the reactions of nitriles free from
a-hydrogen with organometallic reagents such as LiCH-
(SiMe3)2,1 we now describe our initial findings with (HCN)3,
the 1,3,5-triazine 1. The behaviour of 1 towards organometallic
reagents is largely unexplored,2 in contrast to its 2,4,6-tri-
phenyl-derivative NC(Ph)NC(Ph)NC(Ph) 2.3 In rare cases 1
behaved as an HCN-synthon, but no intermediates were
isolated.4 For example, 1 with 2 LiNR2 and subsequent
treatment with RCl gave on sublimation the formamidine
RNC(H)NR2 (R = SiMe3).5

We now report on the reactions of lithium hydrocarbyls or
bis(trimethylsilyl)amide with 1. Treatment of 1 in benzene with
LiRA (RA = a CHR2, b CH2R, c Me, d Bun or e Ph) at ambient
temperature produced 1,4-adducts 1·LiRA 3a–e which, because
of their insolubility, were not adequately characterised, but
presumably are analogues of 1-lithio-4-alkyltriphenyldihydro-
triazines derived from 2.6 Hydrolysis of a diethyl ether slurry of
each of the compounds 3a–e with 1.1 equiv. of H2O and drying
of the filtrate (Na2SO4) yielded the first ‘simple’ (i.e. mono-
substituted) 1,4-dihydrotriazines, the colourless, crystalline 4a
(mp 104–106 °C) (or crystalline 4b or the liquids 4c–e),
(Scheme 1, i). Such simple dihydrotriazines were hitherto
believed merely to be transients7 unlike the stable 1,4-dihydro
adducts of 2 such as 1-n-butyl-2,4,6-triphenyl-1,4-dihydro-
triazine.3 Compound 4a, possibly stabilised by the bulky
CH(SiMe3)2-substituent (4b was markedly less robust), gave
satisfactory microanalysis, 1H and 13C{1H} NMR spectro-
scopic‡ and EI MS (parent molecular ion) data; the molecular
structure of crystalline (boat-shaped) 4a was also established by
its X-ray structure (to be reported in the full paper). In C6D5CD3
4a was in equilibrium with its 1,2-dihydro tautomer (ca. 50 : 1 at

295 K), a previously observed behaviour of substituted
dihydrotriazines.8

Reaction of 1 with LiNR2 or LiCR3(thf)2 under similar
conditions, however, took a different course: the triazine ring
opened and, formally, an a?w migration of an Me3Si group
occurred; thus the 3-lithio-1,3,5,7-tetraazaheptatriene 5 or
-1,3,5-triazaheptatriene 6 was obtained (Scheme 1, ii and iii).
Compounds 5 and 6 were air- and moisture-sensitive both in the
solid state and in solution and, in marked contrast to 3,
extremely soluble in hydrocarbons. Both have been charac-
terised by microanalysis, 1H and 13C{1H} NMR spectroscopy,‡
EI MS (parent molecular ion) and single-crystal X-ray analy-
sis.

The pathway leading stereospecifically to the trans-product 5
or 6 is believed to implicate initially a 1,4-adduct analogous to
3, followed successively by a 1,3-Me3Si shift from NR2 or CR3
and then its ring scission. This is illustrated for the system 1 +
LiNR2? 5 in Scheme 2. Evidence for the Meisenheimer
complex I (or its CR3 analogue for 6) is supported by NMR-
scale experiments, which revealed intermediates having chem-
ical shifts and coupling patterns resembling those of dihydro-
triazine 4a. Relevant precedents exist for anionic 1,3-Me3Si
shifts from N?N9 or C?N.1 This migration might be
stereoelectronically promoted, since for the case of 1 + LiCHR2
the adduct 3a was transformed into
Li[RNC(H)NC(H)NC(H)CHR] 7 upon heating to 140 °C.

The X-ray molecular structure of crystalline 6 (Fig. 1) shows
it to be dinuclear and lying on a crystallographic twofold
rotation axis.§ The lithium atoms are bridged by a thf molecule,
a rare phenomenon.10 The atoms C(2), N(1), C(3), N(2), C(4)
and N(3) are coplanar, largest deviation from least-squares
plane is 0.048, and comparison of the bond lengths with known
formamidinates11,12 suggest that the NC(H)NC(H)N unit has
some degree of delocalisation, while the values of 1.406 Å for
N(1)–C(2) and 1.351 Å for C(2)–C(1) are unexceptional for a
N(sp2)–C(sp2) and C(sp2)NC(sp2) bond, respectively.13 The
X-ray molecular structure of the crystalline, trinuclear com-
pound 5 will be discussed in more detail in the full paper, but
representative fragments of the molecular structures of 5 and 6

Scheme 1 Reagents and conditions: i, LiCHR2, Et2O, 4 h, 240 to ca. 20 °C,
then 1.1 H2O and drying (Na2SO4); ii, LiNR2, C6H6, 2 h, ca. 20 °C; iii,
LiCR3(thf)2, C6H6, 2 d, ca. 20 °C Scheme 2 Proposed pathway for formation of 5
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(Fig. 2) show that for 5, unlike 6, there is complete
delocalisation of the central NC(H)N moiety with a bond length
of ca. 1.32 Å.

On the basis of further exploratory experiments we consider
that the results here reported have significant implications in
that (i) compounds such as 4 upon hydrolysis in acidic or basic
media are sources of aldehydes, (ii) compounds 5–7 are of
interest as both sources of unusual tetra- or tri-azaheptatrienyl
ligands and of nitrogen macrocycles.
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Footnotes and References

* E-mail: m.f.lappert@sussex.ac.uk
† No reprints available.

‡ Selected NMR spectroscopic data (1H 300.13, 13C{1H} 75.48, 7Li{1H}
116.64 MHz, ca. 293 K, C6D6). 4a: 1H: d 6.23 (dd, 3J 2.5, 4J 2.3 Hz, 2 H,
HCN), 5.01 [dt, 3J 3.9 Hz, 1 H, NC(H)N], 4.74 (br s, 1 H, NH), 1.04 (d, 1
H, CHR2), 0.38 (s, 18 H, 2 R). 13C{1H}: d 141 (HCN), 71 [NC(H)N], 25
(CR2), 2 (2 R). 5: 1H: d 8.24 (s, 6 H), 7.85 (s, 3 H), 0.37 (s, 54 H, 6 NR).
13C{1H}: d 177.83, 170.48, 0.84. 7Li{1H}: d 5.18 (1 Li), 4.39 (2 Li) 6: 1H:
d 8.20 (s, 2 H), 7.89 (br s, 2 H), 7.47 (s, 2 H), 3.59 (ddd, 4 H, thf), 1.41 (m,
4 H, thf), 0.36, (s, 18 H, CR), 0.34 (s, 18 H, CR), 0.17 (s, 18 H, NR).
13C{1H}: d 171.48, 169.95, 159.84, 121.7 (CR2), 68.07, 25.65, 2.67, 1.18,
0.31. 7Li{1H}: d 3.85.
§ Crystal data for 5 and 6 [T 173 K: Enraf-Nonius CAD-4 diffractometer,
l(Mo-Ka) 0.710 73 Å, no crystal decay, direct methods, full-matrix least-
squares refinement on F2 (SHELXL-93) with non-hydrogen atoms
anisotropic]. Hydrogens were included in riding mode with Uiso = 1.2 Ueq

or 1.5 Ueq for methyl groups. 5: C27H63Li3N12Si6(C5H12)1
2
, M = 781.3,

monoclinic, space group P21/n (non-standard no. 14), a = 18.869(7),
b = 14.603(4), c = 19.523(4) Å, b = 112.10(2)°, U = 4984(3) Å3, Z = 4,
Dc = 1.04 g cm23, F(000) = 1692, m(Mo-Ka) = 2.0 cm21, specimen 0.4
3 0.4 3 0.4 mm3. 8753 unique reflections for 2 < q < 25°, R1 = 0.061 [for
5240 reflections with I > 2s(I)], wR2 = 0.132 (all data). 6: C30H68Li2-
N6OSi6, M = 711.3, monoclinic, space group P2/n (non-standard no. 13),
a = 13.022(3), b = 8.134(4), c = 22.607(6) Å, b = 106.43(2)°,
U = 2296.8(14) Å3, Z = 2, Dc = 1.03 g cm23, F(000) = 776, m(Mo-
Ka) = 2.1 cm21, specimen 0.3 3 0.3 3 0.2 mm3. 4041 unique reflections
for 2 < q < 25°, R1 = 0.062 [for 2570 reflections with I > 2s(I)],
wR2 = 0.162 (all data). CCDC 182/592.
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Fig. 1 ORTEP representation of the molecular structure of 6. Selected bond
lengths (Å) and angles (°): Li–O 2.133(7), Li–N(1) 2.197(7), Li–N(2)
2.096(7), Li–N(3A) 2.058(7), C(1)–C(2) 1.351(5), C(2)–N(1) 1.406(4),
N(1)–C(3) 1.303(4), C(3)–N(2) 1.346(4), N(2)–C(4) 1.346(4), C(4)–N(3)
1.292(4); N(2)–Li–N(1) 63.9(2), N(2)–Li–O 86.9(2), N(1)–Li–O 114.0(3),
N(3A)–Li–O 129.4(3), N(3A)–Li–N(2) 125.4(3), N(3A)–Li–N(1) 115.3(3),
LiA–O–Li 77.4(4), C(1)–C(2)–N(1) 124.6(4), N(1)–C(3)–N(2) 118.2(3),
N(2)–C(4)–N(3) 120.5(3).

Fig. 2 Bond lengths of selected fragments of the molecular structures of 5
and 6
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