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Peroxo-bridged dinuclear cobalt(iii) complexes containing N-glycoside ligands
from tris(2-aminoethyl)amine and d-glucose and their reversible dioxygen
binding properties
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Peroxo-bridged dinuclear cobalt(III) complexes containing
N-glycoside ligands from tris(2-aminoethyl)amine (tren)
and D-glucose (D-Glc), [{Co[(D-Glc)2tren]}2O2]X3·5H2O
(X = Cl 2, Br 3), and their reversible dioxygen binding
properties are reported [(D-Glc)2tren = bis(N-D-glucosyl-
2-aminoethyl)(2-aminoethyl)amine].

Interactions of carbohydrates with metal ions have become an
important subject in bioinorganic chemistry, since many sugar-
processing enzymes have been revealed to function with redox
non-active metal ions such as Mg2+, Mn2+ and Zn2+ in the active
sites.1 Elucidation of reactivity and behavior of sugars around
redox active metal ions is also potentially important in
relevance to ribonucleotide reductases which utilize non-haem
diiron or coenzyme B12 functional units.2

We have recently reported mononuclear cobalt(ii) complexes
ligated by a heptadentate N-glycoside formed from tris(2-
aminoethyl)amine (tren) and mannose-type aldohexoses,
[Co{(aldose)3tren}]X2 1, where (aldose)3tren = tris(N-aldosyl-
2-aminoethyl)amine, aldose = d-mannose (d-Man),
l-rhamnose (l-Rha), and X = Cl, Br, 1/2SO4. Complex 1
showed a dynamic chiral inversion around the metal centre
(DÔL) induced by the interaction of sugars with the sulfate
anion.3 In general, mannose-type aldoses such as d-Man and
l-Rha have 2,3-cis configuration and the sugar ring is axially
oriented with respect to the chelate ring upon coordination
through the 1,2-functional groups with the b-anomeric form
being adopted.4 The axial orientation of d-Man and l-Rha
enables close sugar–sugar interactions around the metal cen-
tres.5 The present study was carried out by utilizing d-glucose
(d-Glc) as the sugar component, which has 2,3-trans configura-
tion and was equatorially oriented on ligating through the
1,2-functional groups with the b-anomeric form being adopted.4
We report herein novel m-peroxo dicobalt(iii) complexes
supported by b-d-glucosyl polyamine ligands and their reversi-
ble dioxygen binding properties.

A methanolic solution of CoIIX2·6H2O (X = Cl, Br) was
treated in air with tris(N-d-glucosyl-2-aminoethyl)amine
[(d-Glc)3tren], which was prepared from d-glucose (d-Glc) and
tris(2-aminoethyl)amine (tren) in situ. The resultant dark brown
solution was chromatographed on a Sephadex LH-20 gel
permeation column, eluted with methanol, and the brown band
was collected. Slow evaporation of the solution yielded brown
crystals formulated as [{Co[(d-Glc)2tren]}2O2]X3·5H2O
(X = Cl 2, Br 3) in low yields, where (d-Glc)2tren is bis(N-
d-glucosyl-2-aminoethyl)(aminoethyl)amine.† Elemental anal-
yses indicated that complexes 2 and 3 contained a N-glycoside
ligand, (d-Glc)2tren, formed by a loss of one d-glucose residue
from (d-Glc)3tren, per metal. The presence of a peroxo bridge
between the two cobalt ions is demonstrated by the intense
electronic absorption band around 400 nm (log e 3.46–3.58),
corresponding to a peroxo–metal charge-transfer band, and the
IR peak at 888 cm21 assignable to nO–O. Two environmentally
different d-glucose moieties were confirmed by the 1H and 13C

NMR spectra of 3 in D2O assignments being carried out by
combination of 1H–1H and 13C–1H COSY, HMBC, and HMQC
NMR spectra. The N-glycosidic bond formation was unambigu-
ously determined by the isotopic multiplets observed in the 13C
NMR spectrum in D2O–H2O (1 : 1). Two resonances for the
C(1) carbon atoms of d-glucose were observed as doublets
owing to the isotope induced shifts of the neighboring N–H and
N–D species.6†

ORTEP diagrams for the complex cation of 2 are illustrated
in Fig. 1 and 2.‡ The complex cation consists of two CoIII ions
bridged by a peroxo unit [O(1)–O(2) 1.452(10) Å]. The cation
has a pseudo-C2 symmetry with respect to an axis passing
through the middle of the O–O bond (Fig. 2). The metal–metal
separation is 4.114(2) Å. Each cobalt ion is ligated by the
N-glycoside, (d-Glc)2tren, through the four nitrogen atoms and
the C(2) oxygen atom of a sugar moiety together with the
peroxide to give distorted cis-(O,O)-[CoN4O2] octahedral
geometry. The other d-glucose residue is anchored on the metal
by only the N-glycosidic nitrogen atom; hydroxyl groups of the
sugar lie away from the coordination sphere of the metal.5 The
CoIII

2(m-O2) core is supported by hydrogen bonds between the
sugar moieties [O(112)···O(212) 2.42(1) Å, O(113)···O(213)
2.70(1) Å, O(122)···N(23) 2.95(1) Å, O(222)···N(13) 2.92(1)

Fig. 1 ORTEP diagram of the complex cation of 2, [{Co[(d-
Glc)2tren]}2O2]3+. Selected bond distances (Å) and angles (°); Co(1)–O(1)
1.895(7), Co(1)–O(112) 1.910(7), Co(1)–N(11) 1.963(9), Co(1)–N(12)
1.999(9), Co(1)–N(13) 1.977(8), Co(1)–N(14) 1.918(9), Co(2)–O(2)
1.916(7), Co(2)–O(212) 1.973(7), Co(2)–N(21) 1.954(9), Co(2)–N(22)
1.993(9), Co(2)–N(23) 1.98(1), Co(2)–N(24) 1.95(1), O(1)–O(2)
1.452(10); O(1)–Co(1)–O(112) 92.1(3), O(112)–Co(1)–N(11) 87.6(3),
N(11)–Co(1)–N(14) 87.2(4), N(12)–Co(1)–N(14) 86.7(4), N(13)–Co(1)–
N(14) 84.6(4), O(2)–Co(2)–O(212) 92.9(3), O(212)–Co(2)–N(21) 87.2(3),
N(21)–Co(2)–N(24) 87.6(4), N(22)–Co(2)–N(24) 87.6(4), N(23)–Co(2)–
N(24) 84.4(4), Co(1)–O(1)–O(2) 118.1(5), Co(2)–O(2)–O(1)
115.8(5),O(1)–Co(1)–N(11) 175.7(3), O(112)–Co(1)–N(14) 173.8(3),
N(12)–Co(1)–N(13) 167.5(4), O(2)–Co(2)–N(21) 177.8(4),
O(212)–Co(2)–N(24) 173.2(4), N(22)–Co(2)–N(23) 167.6(4).
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Å]. In particular, the short interatomic distance O(112)···O(212)
suggests the presence of O2···H–O type strong hydrogen bond,
similar to that observed in the dinuclear nickel(ii) complex
bridged by a b-d-mannofuranoside residue.7 This hydrogen-
bonding system distorts the Co–O–O–Co torsional angle from
planarity to 100.4(6)°, between 0–65° found in CoIII

2(m-O2)(m-
X) double-bridged complexes (X = OH, NH) and 145–180° in
CoIII

2(m-O2) single-bridged structures.8
The electronic absorption spectrum of 2 in methanol rapidly

changed upon irradiation with a high-pressure mercury lamp at
room temp. under a nitrogen atmosphere [Fig. 3(a)]. The
absorption intensity around 400 nm, characteristic of a m-peroxo
dicobalt(iii) complex, decreased and finally very weak absorp-
tions around 480 and 590 nm were observed. This spectral
change could correspond to deoxygenation of 2 leading to a
cobalt(ii) species and O2, by analogy with the photolysis of
[(en)2CoIII(m-OH)(m-O2)CoIII(en)2]3+ (en = 1,2-diamino-
ethane).9

When the resultant solution was exposed to air after
irradiation, the absorption peak at 400 nm was immediately
restored, and finally, almost 80% of complex 2 was recovered

on the basis of its absorbance [Fig. 3(b)]. These spectral changes
clearly indicated an almost reversible dioxygen binding through
the m-peroxo dimer 2.§

The sugar units dramatically influence the redox property of
the cobalt centre, which was demonstrated by the differential
reactivity toward dioxygen molecule between the complex with
mannose-type aldoses (d-Man, l-Rha) and that with d-glucose.
Studies using other glucose-type aldoses are now in progress.
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Footnotes and References
* E-mail: tanase@cc.nara-wu.ac.jp; yano@cc.nara-wu.ac.jp
† Synthetic procedures and analytical and spectral data for 2 and 3, and the
13C NMR spectra of 3 in D2O and in D2O–H2O (1 : 1) are available as
supplementary materials upon request to the authors.
‡ Crystal data for 2·4H2O·CH3OH: orthorhombic, space group P212121

(no. 19), a = 19.384(8), b = 23.468(5), c = 13.195(5) Å, U = 6002(2) Å3,
Z = 4, Dc = 1.440 g cm23, T = 299 °C, R = 0.078, Rw = 0.085
[w = 1/s2(Fo)] for 4961 reflections with I > 3s(I). The structure was
solved and refined with teXsan program package. CCDC 182/605.
§ Detailed photochemistry and kinetic parameters will be reported
elsewhere.
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Fig. 2 ORTEP plot of the complex cation of 2, [{Co[(d-Glc)2tren]}2O2]3+,
viewed along the pseudo-C2 axis.

Fig. 3 (a) An electronic absorption spectral change of 2 in CH3OH upon
irradiation with a high-pressure mercury lamp at room temp. under a
nitrogen atmosphere, monitored every 5 min. The final spectrum is
expanded in the upper-right. (b) Absorption spectral changes measured in
air every 5 min after the irradiation.
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