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Efficient conversion of 9-Isopropenylphenanthrene to
4,6,6-trimethyl-6H-benz[de]anthracene in FSO3H;
5,6-dihydro-4H-benzanthracen-4-ium ion and its charge delocalization mode

Sandro Hollenstein and Kenneth K. Laali*

Department of Chemistry, Kent State University, Kent, OH 44242, USA

Low temperature protonation of 9-isopropenylphenan-
threne in FSO3H–SO2ClF (or FSO3H–CH2Cl2) leads to
direct observation of 5,6-dihydrobenzanthracenium cation
4H+ from which the corresponding benz[de]anthracene is
obtained in 92% yield upon quenching.

In the course of our work on charge delocalization mapping in
arenium ions of polycyclic aromatic hydrocarbons (PAHs) and
on various classes of PAH–C+R2 carbocations as models of
epoxide ring opening,1 we had prepared several regioisomeric
phenanthrylpropane-2-carbenium ions including 2+ which was
stable up to room temperature. Attempted conversion of 2-OH
to the chloro derivative (2-Cl) led only to elimination to give the
isopropenyl derivative 3,2 which was also independently
synthesized by a Wittig type reaction3 from 1 (Scheme 1).

Surprisingly, the expected quantitative conversion to 2+ did
not occur by low temperature protonation with FSO3H–
SO2ClF; a mixture of the benzanthracene cation 4H+ and
2-(9-phenanthryl)propane-2-carbenium ion 2+ were formed,
even if highly diluted PAH solutions were added to a large
excess of the superacid. Raising the temperature led to increased
formation of 4H+ at the expense of 2+ (NMR) and complete
conversion to 4H+ occurred at room temp. Quenching of the

superacid solution furnished the benzanthracene 4 in 92%
yield.†

The mechanistic scheme outlined in Scheme 2 is suggested,
with intermediate formation of the dimer cation 32H+(a) and the
cycloalkylation product 32H+(b), converting rapidly to 4H+.
The proposed pathway requires the formation of a stoichio-
metric amount of phenanthrene. However, no protonated

Scheme 1 Reagents and conditions: i, MeLi, Et2O, 92%; iii, FSO3H,
SO2ClF or CH2Cl2, 278 °C–room temp.; iii, cat. phenanthrene; iv,
MePr(Ph)3Br, NaNH2–THF, 94%; v, SOCl2, CH2Cl2; vi, TiCl4, CH2Cl2
(ref. 5); vii, NaOH–H2O, 92%; viii, FSO3H, SO2ClF or CH2Cl2

Scheme 2

Fig. 1 1H NMR (300 MHz, italic) and 13C NMR (75 MHz) chemical shifts,
referenced to internal CHCl3 (7.26 ppm, 77.0 ppm, 3 and 4) or CH2Cl2 (5.32
ppm, 53.8 ppm, 4H+) *assignment may be interchangeable
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phenanthrene was observed in the superacid solution and no
phenanthrene could be isolated on work-up. This can be
rationalized since in line with previous studies, the parent
phenanthrenium ion is elusive;4 furthermore control experi-
ments confirm that once phenanthrene is reacted with FSO3H,
no intact phenanthrene can be isolated on work-up (?polymer).
An important question that remained was why 2+ generated
from the propan-2-ol would not undergo dimerization and
cyclization. Addition of catalytic amounts of phenanthrene to a
solution of 2+ (generated via 2-OH) gave 4H+, demonstrating
that either phenanthrene or its polymer induces in situ
deprotonation forming 2 in equilibrium, which can then react
with 3+, cyclize and eliminate (?4H+).

The TiCl4-mediated dimerization of 3 to give an isolable
dimer 32

5 and similar dimerization of other isopropenyl-
PAHs6a–c have been reported where depending on the regio-
isomer, isopropenyl-PAHs would either undergo poly-
merization or dimerization. The observed facile dimerization,
cyclization and cleavage in the superacid, offers synthetic
potential for preparation of various benzophenalenes in simple
one-pot reactions. Another noteworthy feature of this chemistry
is facile access to 1-phenanthryl-substituted carbocations which
are otherwise not available due to difficulties associated with
synthesis of 1-substituted phenanthrene derivatives by electro-
philic chemistry.

In the 13C NMR, the C+ centre in 4H+ is at 228.4 ppm which
is slightly shielded if compared to the C+ of 2+ (230.1 ppm),1c

indicating a similar degree of charge delocalization into the
phenanthrene moiety and therefore comparable C+–C(ipso)
double bond character (Fig. 1). Charge delocalization mapping
in 4H+ as deduced from Dd13C values shows arene
p-participation primarily via a naphthalenium ion (AB ring of
phenanthrene moiety) and is in qualitative agreement with the

overall mode of charge delocalization deduced based on the
AM1-calculated7 carbon charges.1

We are grateful to the NCI of NIH (R15 CA63595-01A1) for
financial support.

Footnotes and References

* E-mail: klaali@kentvm.kent.edu
† Experimental procedure for the synthesis of 4: 9-isopropenylphenanthrene
(170 mg, 0.78 mmol) was dissolved in 5 ml of CH2Cl2 under argon and
cooled to 278 °C. Fluorosulfonic acid (ca. 1 ml) was slowly added to the
stirred solution; the colour suddenly turned deep red. After 5 min, the
solution was warmed to room temp. (blue colour), stirred for additional 20
min, and poured into ice-cold aqueous 5% NaOH. Extraction with CH2Cl2
and column chromatography (hexane) gave 93 mg (92%) of a white solid
(mp 80–81 °C; for NMR spectral data see Fig 1; m/z 258 (M+).
‡ AM1 semi-empirical calculations7 were carried out using the HYPER-
CHEM package (HYPERCUBE 1995).
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