Homobimetallic vanadium d¹-d¹ complexes: structure and magnetism

Robert Choukroun,^{*}*a* Bruno Donnadieu,^{*a*} Isabelle Malfant,^{*a*} Simone Haubrich,^{*a*} Richard Frantz,^{*b*} Christian Guerin^{*b*} and Bernard Henner^{*b*}

^a Equipe Précurseurs Moléculaires et Matériaux, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex, France

^b Laboratoire des Précurseurs Organométalliques des Matériaux, UMR CNRS 44, CC007, Université de Montpellier 2, Place E. Bastaillon, F-34095 Montpellier Cedex 5, France

From Me₃SiC=C-C=CSiMe₃ and Ph₂PC=C-C=CPPh₂ diynes and vanadocene VCp₂, homobimetallic vanadium d¹-d¹ complexes are synthesized and characterized by X-ray crystal structures of (Cp₂V)₂(1-2 η : 3-4 η -RC=C-C=CR), (R = SiMe₃ 1 PPh₂ 2); magnetic moments of both complexes from 300 to 2 K indicate an antiferromagnetic *J* exchange coupling of -10.5 and -59.8 cm⁻¹ for 1 and 2, respectively.

Many interesting reactions of the highly reactive MCp₂ species have been reported¹ and the zirconocene ZrCp₂ is of particular interest.² Numerous research has been devoted to the formation of organic synthetic products and more recently as a synthon in the reactivity of the alkynyl C=C bond. This interest arises from the favourable electronic and structural features of C=CR ligands *via* σ or σ – π networks. They can be modulated by varying either or both substituents and the metal centers.³ In particular, vanadocene VCp₂ was studied with different classes of unsaturated molecules and different metallacyclopropene structures were identified.⁴ Since the vanadocene unit easily binds alkyne derivatives, the reactivity of diynes Me₃SiC=C– C=CSiMe₃ and Ph₂PC=C–C=CPPh₂ was investigated.⁵ One might expect that two identical species possessing one unpaired electron connected by diynes with various R end-groups could produce different structural and magnetic situations.⁶

Treatment of 2 equiv. of VCp2 with 1 equiv. of Me3SiC=C-C=CSiMe₃ or Ph₂PC=C-C=CPPh₂ in pentane, resulted in a brown solution from which, via the oxidative addition of VCp₂ on the alkyne bonds, $(Cp_2V)_2(1-2\eta: 3-4\eta-Me_3SiC=C)$ C=CSiMe₃) 1 and $(Cp_2V)_2(1-2\eta: 3-4\eta-Ph_2PC=C-C=CPPh_2)$ 2 were isolated as crystals in yields of ca. 50 and 40%, respectively. Formulation of 1 and 2 as homobimetallic vanadium complexes was confirmed by X-ray crystallography (Figs. 1 and 2).[†] The bond distances and angles associated with the vanadium acetylene interaction indicate that the acetylene molecule is symmetrically attached to the vanadium atom via two σ -type V–C bonds of 2.14 Å (av.) and 2.10 Å (av.) for **1** and 2, respectively. This produces a metallacyclopropene structure for the central VC₂ moiety, with an acute C–V–C angle of 35° (av.). The acetylene coordination is reflected by the average 0.08 Å increase of the C=C distance and by the geometrical alterations which accompany the acetylene upon coordination. The C–C–R bond angles ($R = SiMe_3$, PPh₂) are reduced from 180° in a free acetylene to 140° (av.) in the vanadocene adducts.⁴ The distance of the C-C bond for 1 [C(2)-C(3) 1.39 Å] and 2 [C(2)–C(2) 1.40 Å] indicates the presence of a partial double bond. The essential aspects of the structures though are the dihedral angle between both VC_2 units in the molecules which are 110.8° for 1 and 165.61° for 2, which leads to vanadium-vanadium distances of 4.886(5) and 5.384(2) Å in 1 and 2, respectively. The different orientation of the Cp_2VC_2 unit in 1 and 2 may be due to the steric effects of the substituents SiMe₃ and PPh₂ on the diynes. Another difference in the structural aspects of 1 and 2 is the butadiene skeleton. This is deformed for 1 [C(4) is above the plane defined by C(1)-C(2)-

Fig. 1 View of the molecular structure of 1 (bond lengths in Å, angles in °, hydrogen atoms omitted). V(1)–C(1) 2.14(2), V(1)–C(2) 2.15(2), V(2)–C(3) 2.16(2), V(2)–C(4) 2.13(2), C(1)–C(2) 1.25(3), C(2)–C(3) 1.39(2), C(3)–C(4) 1.28(3); C(1)–V(1)–C(2) 34.0(7), C(3)–V(2)–C(4) 34.7(8), Si(1)–C(1)–C(2) 139.8(20), Si(2)–C(4)–C(3) 140.2(20), C(1)–C(2)–C(3) 148.9(23), C(2)–C(3)–C(4) 149.1(23); V(1)···V(2), 4.886(5), V–Cp 1.977 (av.), Cp–V–Cp 138.4 (av.) [Cp are the centroids of the C₃H₅ rings C(11)–C(15), C(16)–C(20), C(21)–C(25), C(26)–C(30)].

Fig. 2 View of the molecular structure of **2** (bond lengths in Å, angles in °, hydrogen atoms omitted). V(1)–C(1) 2.092(5), V(1)–C(2) 2.116(4), C(1)–C(2) 1.283(6), C(2)–C(2') 1.404(9); C(1)–V(1)–C(2) 35.5(2), P(1)–C(1)–C(2) 140.1(4), C(1)–C(2)–C(2') 148.2 (6); V(1)…V(1') 5.384(2), V(1)–Cp 1.968, V(1)–Cp' 1.974, Cp–V(1)–Cp' 137.57 [Cp, Cp' are the centroids of the C_5H_5 rings C(1)–C(5), C(6)–C(10)].

Chem. Commun., 1997 2315

Fig. 3 Temperature dependence of molar magnetic susceptibilities per vanadium (\bigcirc) of (a) 1 and (b) 2 (the solid lines result from a least-squares theoretical fit)[‡]

C(3) by 0.63 Å] whereas all the carbon atoms are contained in a plane for **2**.

As a result of such situations, paramagnetic vanadium centers of d¹ electronic configuration could produce different magnetic behavior.^{6,7} Variable-temperature magnetic susceptibility measurements have been carried out.[‡] The effective magnetic moment μ_{eff} is 2.65 μ_B for **1** and 2.25 μ_B for **2** at 300 K. They decrease to reach 0.36 $\mu_{\rm B}$ for **1** and 0.19 $\mu_{\rm B}$ for **2** at 2 K. Fig. 3 show the plots of $\chi_{\rm m}$, molar susceptibility per dimer, vs. temperature for 1 and 2. The solid lines represent the good fit obtained to account for the observed dependence with an exchange interaction model. Fitting the data for 1 and 2 gives J = -10.5 and -59.8 cm⁻¹, respectively. The antiferromagnetic interaction for 2 is greater than that for 1 whereas the vanadium-vanadium distances show an opposite relation. In fact, the interaction is propagated by the carbon chain and a consideration of the bonding situation in the complex seems necessary. The orientation of the Cp₂VC₂ unit in the molecule suggests a favorable 'in-plane π type' geometry for complex 2. This can be described as a linear combination of mainly p orbital character of the carbon of the diyne with the main contribution of the d_{z^2} orbital of the HOMO in a d¹ type system.⁴ This is disfavored in the complex 1 where the Cp_2VC_2 unit and their magnetic orbital contributions could be considered as orthogonal (Scheme 1).

In conclusion, our synthetic method is able to produce homobimetallic d¹ systems with organic substrates. Modifica-

tion of the organic portion leads to different structure situations and varies the coupling propagated by extended bridges. We illustrate a strategy to potentially synthesize homobimetallic d¹ systems designed to produce differing metal–metal separations. The full extent of the interaction of metallocene d¹ VCp₂ with several unsaturated hydrocarbons is under investigation.

S. H. is a recipient of the Erasmus program. We also thank A. Mari for helpful discussion.

Footnotes and References

* E-mail: choukrou@lcctoul.lcc-toulouse.fr

† *Crystallographic data*: for **1**: C₃₀H₃₈Si₂V₂, *M* = 557.70, triclinic, space group *P*Ī, *a* = 8.226(2), *b* = 12.862(4), *c* = 13.987(3) Å, *α* = 78.93(2), *β* = 84.60(2), *γ* = 82.05(2) °, *U* = 1435.0 Å³, *Z* = 2, *D_c* = 1.29 g cm⁻³, *μ* = 7.28 cm⁻¹, *R*(*R_w*) = 0.080(0.098), GOF = 1.5. For **2**: C₄₆H₄₀P₂V₂, *M* = 780.34, orthorhombic, space group *Pbna*, *a* = 12.940(2), *b* = 16.757(2), *c* = 17.638(2) Å, *U* = 38.24.5 Å³, *Z* = 4, *D_c* = 1.36 g cm⁻³, *μ* = 5.87 cm⁻¹, *R*(*R_w*) = 0.048(0.059), GOF = 0.85.

Data collection was performed at *ca.* 294 K on a IPDS STOE diffractometer using graphite monochromatized Mo-K α radiation. The crystal of **1** is twinned and one of the two domains of the twin have been indexed; the integration was realized by using the program TWIN (STOE IPDS software), the overlapped reflections are automatically discarded by TWIN during the data reduction. The refinement of **1** was performed with the best data set containing once merging 60% of unique reflections. Computations were performed with the aid of CRYSTALS. The structure was solved by direct methods (SIR92⁹). All hydrogen atoms were found on difference Fourier maps but were introduced in the refinement as fixed contributors (C–H 0.96 Å) and recalculated after each cycle. For **2**, all non-hydrogen atoms were anisotropically refined; for **1**, only V and Si atoms were refined anisotropically owing to the low ratio of parameters to observations. CCDC 182/643.

[‡] Magnetic susceptibilities were determined using a SQUID susceptometer within between 2 and 300 K. Using a Heisenberg Hamiltonian $H = -JS_AS_B$ with local spins $S_A = S_B = 1/2$, the magnetic interaction was estimated with a Bleaney–Bowers model for dimers⁸ (*J*, *g*) including a percentage (ρ) of paramagnetic impurities. Parameters *J*, *g* and ρ were determined by least squares fitting. The average value of the *g*-factor was 2.12 for 1 and 1.95 for 2. ρ assumed as isolated V^{IV} ions with the same molecular mass as the actual compounds 1 or 2, so that the Curie constant *C* was taken as $C = [N\beta^2/2k] g^2$, was found to be 0.018 for 1 and 0.006 for 2.

- In Comprehensive Organometallic Chemistry II, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, Fort Collins, 1995; M. Bochmann, vol. 4, ch. 4; P. Binger and S. Podubrin, vol. 4, ch. 7; R. D. Broene, vol. 12, ch. 3.7; S. L. Buchwald and R. D. Broene, vol. 12, ch. 7.4.
- See, for example: K. Takagi, C. J. Rousset and E.-i. Negishi, J. Am. Chem. Soc., 1991, 113, 1440; H. Ito, Y. Ikeuchi, T. Taguchi, Y. Hanzawa and M. Shiro, *ibid.*, 1994, 116, 5469; M. Takahashi, D. Y. Kondakov and N. Suzuki, Organometallics, 1993, 115, 8485; N. Suzuki, D. Y. Kondakov and T. Takahashi, J. Am. Chem. Soc., 1994, 13, 3431; W. Ando, T. Ohtaki, T. Suzuki and T. Kabe, *ibid.*, 1991, 113, 7782; S. L. Buchwald, B. T. Watson and J. C. Huffman, *ibid.*, 1986, 108, 7411.
- 3 B. P. Warner, W. M. Davis and S. L. Buchwald, J. Am. Chem. Soc., 1994, **116**, 5471; C. Lebefer, W. Baumann, A. Tillack, R. Kempe, H. Gorls and U. Rosenthal, *ibid.*, 1996, **15**, 3486; H. Lang, W. Frosch, I. Y. Wu, S. Blau and B. Nuber, *Inorg. Chem.*, 1996, **35**, 6266; V. Varga, J. Hiller, M. Polasek, U. Thewalt and K. Mach, J. Organomet. Chem., 1996, **515**, 57; H. Lang, K. Köler and L. Zsolnai, *Chem. Commun.*, 1996, 2043.
- 4 G. Fachinetti, C. Floriani, A. Chiesi-Villa and C. Guastini, *Inorg. Chem.*, 1979, **18**, 2282; J. L. Petersen and L. Griffith, *ibid.*, 1980, **19**, 1852; K. Jonas, W. Rüsseler, C. Krüger and E. Raabe, *Angew. Chem.*, *Int. Ed. Engl.*, 1986, **10**, 925.
- 5 R. J. P. Corriu, C. Guérin, B. J. L. Henner and A. Jolivet, J. Organomet. Chem., 1997, 530, 39.
- 6 L. C. Francesconi, D. R. Corbine, A. W. Clauss, D. N. Hendrickson and G. D. Stucky, *Inorg. Chem.*, 1981, **20**, 2059; L. S. Kramer, A. W. Clauss, L. C. Francesconi, D. R. Corbin, D. N. Hendrickson and G. D. Stucky, *ibid.*, 1981, **20**, 2070; E. Samuel, J. F. Harrod, D. Gourier, Y. Dromzee, F. Robert and Y. Jeannin, *ibid.*, 1992, **31**, 3252.
- 7 K. Yamamoto, K. Oyaizu and E. Tsuchida, J. Am. Chem. Soc., 1996, 118, 12665.
- 8 R. L. Carlin, Magnetochemistry, Springer-Verlag, Berlin, 1986.

Received in Cambridge, UK, 24th June 1997; 7/04461E

2316 Chem. Commun., 1997