## Phosphinomethanide *versus* phosphinoenolate: thermodynamical preference for a three- instead of a five-membered chelate ring

## Gerhard Henig, Michael Schulz and Helmut Werner\*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

The phosphinoenolate complex 4, which is prepared stepwise from  $[(mes)RuCl_2]_2$  1 *via* the neutral and cationic compounds 2 and 3 as isolated intermediates, rearranges slowly in benzene to the thermodynamically more stable phosphinomethanide isomer 5; the presence of a threemembered RuCP ring in the latter is confirmed by X-ray crystallography.

Following the development of the Shell Higher Olefin Process (SHOP),<sup>1</sup> the chemistry of phosphinoenolate metal complexes has become a focus of general interest.<sup>2</sup> While it has been shown by numerous examples that both  $\beta$ -phosphinoketones and  $\beta$ -phosphinoesters are easily converted to ligands of general composition R<sub>2</sub>PCH=C(R)O<sup>-</sup> in the coordination sphere of transition metals,<sup>3</sup> we discovered more recently that from functional phosphines such as Pri<sub>2</sub>PCH<sub>2</sub>CO<sub>2</sub>R (R = Me, Et) phosphinomethanide units Pri<sub>2</sub>PCHCO<sub>2</sub>R<sup>-</sup> can also be generated.<sup>4</sup> However, it was not known which of the isomeric forms Pri<sub>2</sub>PCH=C(OR)O<sup>-</sup> and Pri<sub>2</sub>PCHCO<sub>2</sub>R<sup>-</sup>, the first forming a five-membered and the second a three-membered chelate ring, is more stable in a particular metal–ligand environment and whether the two types of ligands can be transformed into each other.

The half-sandwich-type complex **2**, which by analogy to previous work<sup>5</sup> was prepared from **1** and  $Pr^{i}_{2}PCH_{2}CO_{2}Me$ , reacts with an equimolar amount of AgPF<sub>6</sub> in CH<sub>2</sub>Cl<sub>2</sub> to give the chelate compound **3** (Scheme 1) in almost quantitative



Scheme 1 Reagents and conditions: i, Pri<sub>2</sub>PCH<sub>2</sub>CO<sub>2</sub>Me, CH<sub>2</sub>Cl<sub>2</sub>, 25 °C, 3 h, 91%; ii, AgPF<sub>6</sub>, CH<sub>2</sub>Cl<sub>2</sub>, 25 °C, 45 min, 90%; iii, KOBu<sup>t</sup>, THF, 25 °C, 15 min, 78%; iv, C<sub>6</sub>H<sub>6</sub>, 25 °C, 3 d, 88%; v, Al<sub>2</sub>O<sub>3</sub>/NaH, THF, 25 °C, 45 min, 15% (for **5**) and 80% (for **6**)

yield.† The IR spectrum of the orange–red, nearly air-stable solid displays a C=O stretching frequency at 1618 cm<sup>-1</sup> (in CH<sub>2</sub>Cl<sub>2</sub>), which is lower by about 110 cm<sup>-1</sup> if compared with the frequency of  $Pr_2PCH_2CO_2Me.^6$  This supports the assumption that the functional phosphine is coordinated *via* phosphorus and oxygen to the metal.

Treatment of the  $PF_6^-$  salt **3** with KOBu<sup>t</sup> in THF led to a rapid change of colour from deep red to bright red and gave, after recrystallization from CH<sub>2</sub>Cl<sub>2</sub>-hexane (1:3), the phosphinoenolate complex **4** in 78% yield. The most characteristic features of the NMR spectroscopic data of **4** are the signal at  $\delta$  3.19 [*J*(PH) 3.7 Hz] for the vinylic proton and the two resonances at  $\delta$  180.5 (CO<sub>2</sub>) and 44.5 (=CH) for the carbon atoms of the chelate ring, which display a strong P–C coupling of 28.6 and 70.6 Hz, respectively.

While phosphinoenolate complexes, such as those used for the oligomerization and polymerization of alkenes,<sup>1,7</sup> seem to be quite stable, compound **4** is thermally labile and slowly rearranges in benzene at room temp. to isomer **5**. After 3 d the reaction is complete. There is, to the best of our knowledge, no precedence for this type of isomerisation process which is probably driven by the conversion of the C=C double into a C–C single bond and the re-formation of the intact CO<sub>2</sub>Me unit. The IR spectrum of **5** (in KBr) displays a C=O stretch at 1661 cm<sup>-1</sup>, the <sup>1</sup>H NMR spectrum a doublet at  $\delta$  2.71 [*J*(PH) 3.1 Hz] for the C*H*CO<sub>2</sub>Me proton and the <sup>13</sup>C NMR spectrum a singlet at  $\delta$  10.0 for the carbon atom of the RuPC three-membered ring.

The X-ray crystal structure analysis of **5** (Fig. 1) confirmed the structural proposal outlined in Scheme 1.‡ The ruthenium is coordinated by the mesitylene ring, one chloride and the P,C-



**Fig. 1** Molecular structure (ORTEP drawing) of **5**. Selected bond distances (Å) and angles (°): Ru–P 2.269(1), Ru–Cl 2.410(1), Ru–C(1) 2.201(2), P–C(1) 1.761(2), P–C(4) 1.832(2), P–C(7) 1.847(2), C(1)–C(2) 1.455(3), C(2)–O(1) 1.208(3), C(2)–O(2) 1.363(3); P–Ru–Cl 88.97(3), P–Ru–C(1) 46.37(6), C(1)–Ru–Cl 48.97(6), Ru–P–C(1) 64.77(7), Ru–C(1)–P 68.86(7), P–C(1)–C(2) 125.5(2), Ru–C(1)–C(2) 116.5(1), C(1)–C(2)–O(1) 128.6(2), C(1)–C(2)–O(2) 110.0(2), O(1)–C(2)–O(2) 121.3(2).

Chem. Commun., 1997 2349

bonded phosphinomethanide ligand, the CO<sub>2</sub>Me substituent of which is pointing away from the Ru–Cl axis. The bond angles of the three-membered ring are comparable to those found in the osmium analogue of  $5^4$  and in various [L<sub>n</sub>M{ $\kappa^2$ (P,C)-Ph<sub>2</sub>PCH<sub>2</sub>}] complexes.<sup>8</sup> The distance P–C(1) is shorter by *ca*. 0.08 Å than the distances P–C(4) and P–C(7) indicating a substantial double-bond character of the phosphorus–carbon bond in the RuCP unit.

The phosphinomethanide and not the isomeric phosphinoenolate compound is also formed, although as the minor component, on treatment of **2** with Al<sub>2</sub>O<sub>3</sub>/NaH in THF (Scheme 1). The main product of this reaction is the phosphinocarboxylate complex **6**, which has been characterized by elemental analysis and spectroscopic techniques. Both the IR and <sup>1</sup>H NMR data are similar to those of [(mes)RuCl{ $\kappa^2$ (P,O)-Ph<sub>2</sub>PCH<sub>2</sub>C(O)O}], obtained by acid hydrolysis of [(mes)-RuCl<sub>2</sub>(Ph<sub>2</sub>PCH<sub>2</sub>CO<sub>2</sub>Bu<sup>†</sup>)] (mes = C<sub>6</sub>H<sub>3</sub>Me<sub>3</sub>-1,3,5).<sup>9</sup> We note that in contrast to **2**, the related osmium compound [(mes)-OsCl<sub>2</sub>(Pr<sup>i</sup><sub>2</sub>PCH<sub>2</sub>CO<sub>2</sub>Me)] reacts with Al<sub>2</sub>O<sub>3</sub>/NaH in THF to give the corresponding phosphinomethanide complex [(mes)-OsCl{ $\kappa^2$ (P,O)-Pr<sup>i</sup><sub>2</sub>PCHCO<sub>2</sub>Me}] almost quantitatively.<sup>4</sup>

In conclusion, the present work has shown that, in connection with [(mes)RuCl] as a building block, a three-membered chelate ring of a phosphinomethanide complex is thermodynamically more stable than a five-membered ring of the phosphinoenolate metal isomer. At present, we are investigating whether an analogous isomerisation (as that of 4 to 5) also occurs if the CH fragment of the RuOC<sub>2</sub>P five-membered ring is replaced, *e.g.* by a CC(O)NHR unit which is formed by insertion of an isocyanate into the C–H bond.<sup>2a</sup>

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (SFB 347), the Fonds der Chemischen Industrie and Degussa AG.

## **Footnotes and References**

\* E-mail: helmut.werner@mail.uni-wuerzberg.de

<sup>†</sup> All new compounds gave satisfactory elemental analyses. **2**: orange-red solid, mp 160 °C (decomp.). **3**: orange-red solid, mp 89 °C (decomp.),

equiv. conductivity (CH<sub>3</sub>NO<sub>2</sub>)  $\Lambda$  68 cm<sup>2</sup>  $\Omega^{-1}$  mol<sup>-1</sup>. 4: light red solid, mp 85 °C (decomp.). 5: yellow crystals, mp 174 °C. 6: pale yellow solid, mp 198 °C.

‡ *Crystal data* for **5**: crystals from hexane; C<sub>18</sub>H<sub>30</sub>ClO<sub>2</sub>PRu, M = 445.91; monoclinic, space group  $P_{2_1/n}$  (no. 14), Z = 4, a = 9.195(3), b = 15.398(3), c = 14.193(5) Å,  $\beta = 94.69(2)^\circ$ , U = 2002.7(10) Å<sup>3</sup>;  $D_c = 1.479$  g cm<sup>-3</sup>; T = 293(2) K; max  $2\theta = 48^\circ$ , graphite-monochromated Mo-Kα radiation ( $\lambda = 0.71073$  Å). 3117 unique data were obtained and 2776 of these with  $I > 2\sigma(I)$  were used in the refinement;  $R_1 = 0.0178$ ,  $wR_2 = 0.0522$  [ $I > 2\sigma(I)$ ];  $R_1 = 0.0251$ ,  $wR_2 = 0.0726$  (all data); reflection/parameter ratio 14.15; residual electron density 0.245/-0.212. CCDC 182/637.

- A.Behr, U. Freudenberg and W. Keim, J. Mol. Catal., 1986, 35, 17;
  U. Klabunde, T. H. Tulip, D. C. Roe and S. D. Ittel, J. Organomet. Chem., 1987, 334, 141; W. Keim, J. Mol. Catal., 1989, 52, 19; Angew. Chem., Int. Ed. Engl., 1990, 29, 235; New. J. Chem., 1994, 18, 93.
- 2 Reviews: P. Braunstein and D. Nobel, *Chem. Rev.*, 1989, **89**, 1927; A. Bader and E. Lindner, *Coord. Chem. Rev.*, 1991, **108**, 27.
- 3 Leading references: J. Andrieú, P. Braunstein and F. Naud, J. Chem. Soc., Dalton Trans., 1996, 2903; P. Braunstein, Y. Chauvin, J. Nähring, A. De Cian, J. Fischer, A. Tiripicchio and F. Ugozzoli, Organometallics, 1996, 15, 5551.
- 4 H. Werner, G. Henig, U. Wecker, N. Mahr, K. Peters and H. G. von Schnering, *Chem. Ber.*, 1995, **128**, 1175.
- R. A. Zelonka and M. C. Baird, J. Organomet. Chem., 1972, 44, 383;
  M. A. Bennett and A. K. Smith, J. Chem. Soc., Dalton Trans., 1974, 233;
  H. Werner and R. Werner, Chem. Ber., 1982, 115, 3766;
  H. Werner, H. Kletzin and K. Roder, J. Organomet. Chem., 1988, 355, 401.
- 6 W. Wolfsberger, W. Burkart, S. Bauer, A. Hampp, J. Wolf and H. Werner, Z. Naturforsch., Teil B, 1994, 49, 1659.
- 7 D. Matt. M. Huhn, J. Fischer, A. De Cian, W. Kläui, I. Tkatchenko and M. C. Bonnet, *J. Chem. Soc., Dalton Trans.*, 1993, 1173; M. D. Fryzuk, X. Gao and S. J. Rettig, *Can. J. Chem.*, 1995, **73**, 1175.
- 8 E. Lindner, K. A. Starz, H.-J. Eberle and W. Hiller, *Chem. Ber.*, 1983, 116, 1209; E. Lindner, E. U. Küster, W. Hiller and R. Fawzi, *Chem. Ber.*, 1984, 117, 127.
- 9 B. Demerseman, C. Renoúard, R. Le Lagadec, M. Gonzalez, P. Chrochet and P. H. Dixneuf, J. Organoment. Chem., 1994, 471, 229.

Received in Basel, Switzerland, 8th August 1997; 7/05821G