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Synthesis of polyfunctionalized thiophenes and enediynes via ring-opening
reactions of 3-lithiated thieno[2,3-b](and [3,2-b])thiophenes, 3,4-dilithiated
thieno[2,3-b]thiophenes and 3,6-dilithiated thieno[3,2-b]thiophenes
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Solutions of the title lithiated thienothiophenes were synthe-
sized from 2,5-disubstituted 3,4-dibromothieno[2,3-b]thio-
phenes or 3,6-dibromothieno[3,2-b]thiophenes via Br ? Li
exchange with 1.0 or 2.0 equiv. of BuLi (THF, 278 °C),
respectively, and gave either polyfunctionalized thiophenes
or polyfunctionalized enediynes (by a novel tandem ring-
opening process in these cases) on being allowed to warm up
to ambient temperature.

Previously we have reported that ethereal (Et2O or THF)
solutions of benzo[b]thiophen-3-yllithium1–3 and its deriva-
tives2–4 (prepared from the corresponding 3-bromobenzo[b]-
thiophene via Br ? Li exchange with BuLi at 278 °C) undergo
a ring-opening process, 1 ? 2 (Scheme 1), as the solutions

are warmed up to give the lithium salt of an
o-mercaptophenylacetylene, which can react further, e.g. by
S-butylation with the bromobutane produced in the initial Br ?
Li exchange reaction or through metallation at the terminal
alkyne position. Selenophen-3-yllithium5–9 and 3-thienyl-
lithium2,6–12 behave similarly and yield enynes. We now report
novel tandem ring-opening processes of 3,4-dilithiated
thieno[2,3-b]thiophenes and 3,6-dilithiated thieno[3,2-b]thio-
phenes which afford novel enediynes. This work was prompted
by intense current interest in enediynes as precursors to more
complex molecular architectures.13

First we treated 2,3,5,6-tetrabromothieno[3,2-b]thio-
phene14,15 successively with 2.0 equiv. of BuLi (THF, ambient
temperature) and ButMe2SiCl, then the resulting solution of
3,6-dibromo-2,5-bis(tert-butyldimethylsilyl)thieno[3,2-b]thio-
phene14 was cooled to 278 °C and a further 1.0 equiv. of BuLi
was added. The resulting mixture was allowed to warm up
slowly to ambient temperature, then it was quenched by
addition of 20% aq. NH4Cl. Following a standard work-up
procedure (extraction of the crude product with Et2O and flash
chromatography on silica with light petroleum as eluent) we
obtained 3-bromo-2-tert-butyldimethylsilyl-5-tert-butyl-
dimethylsilylethynyl-4-butylsulfanylthiophene 3 (70% yield) as
a yellow oil.‡ Other 2,5-disubstituted 3,6-dilithiothieno[3,2-b]-
thiophenes14 can be prepared and converted similarly into
polyfunctionalized thiophenes analogous to compound 3.

When thiophene 3 was treated successively with 1.0 equiv. of
BuLi (THF, 0 °C) and MeI, it gave the enediyne 4 (89% yield)
as a yellow oil, thus demonstrating that each thiolate anion, as
it is generated in this two-stage process, can be captured by a
different alkylating reagent.

Both ring-opening processes can be carried out in tandem.
Thus, we converted 2,3,5,6-tetrabromothieno[3,2-b]thiophene

into 3,6-dibromo-2,5-bis(tert-butyldimethylsilyl)thieno[3,2-b]-
thiophene14 in situ, as described before, then added a further 2.0
equiv. of BuLi (THF, 0 °C) prior to allowing the reaction
mixture to warm up slowly to ambient temperature which, after
work-up in the standard way, gave the enediyne 5 (70% yield)
as a yellow oil. The extremely unstable enediyne 6 (73.5%
yield) was prepared by removal of the ButMe2Si groups from
compound 5 via treatment with Bu4NF in THF. Starting from
2,3,5,6-tetrabromothieno[3,2-b]thiophene we have prepared a
number of other enediynes using this strategy. Essentially the
thienothiophene ring is a template to which a variety of
functional groups can be attached prior to the tandem ring-
opening process 7? 8 (Scheme 2), e.g. via Br ? Li exchange

techniques, by Pd0-catalysed coupling reactions or through
further modification of initial products such as by Wittig
reactions of aldehydes.

When 2,3,4,5-tetrabromothieno[2,3-b]thiophene16 was
treated successively with 3.4 equiv. of BuLi (THF, 265 °C) and
4.8 equiv. of Me3SiCl, it gave 3,4-dibromo-2,5-bis(trimethyl-
silyl)thieno[2,3-b]thiophene 9 (51% yield) as a solid which
decomposed when heated to 125 °C in a capillary tube. A
similar attempt (2.6 equiv. BuLi, THF, but at 0 °C instead of

Scheme 1

Scheme 2
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265 °C; 2.4 equiv. of ButMe2SiCl) to synthesize 3,6-dibromo-
2,5-bis(tert-butyldimethylsilyl)thieno[2,3-b]thiophene 10 gave
this compound (mp 112–114 °C) in only 23% yield together
with 3-bromo-2-tert-butyldimethylsilyl-4-tert-butyldimethyl-
silylethynyl-5-butylsulfanylthiophene 11 (33%), a pale yellow
solid with mp 35–37 °C, and 4-bromo-3-tert-butyldimethyl-
silylethynyl-2-butylsulfanylthiophene 12 (18%) as a pale yel-
low oil (formed by loss of the 2-ButMe2Si group from
compound 11).

When treated successively with 2.0 equiv. of BuLi (THF,
0 °C) and an excess of MeI, the bromothiophene 11 was
converted into 2-tert-butyldimethylsilylethynyl-1-butylsul-
fanyl-1-methylsulfanylpent-1-en-3-yne 13 (87% yield) as a
yellow oil. In this reaction not only does the MeI capture the
generated thiolate anion but it also displaces a ButMe2Si
group.
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