Isolation and comprehensive solid state characterization of Cl₃Al–O–PCl₃

Neil Burford,**a* **Andrew D. Phillips,***a* **Robert W. Schurko,***a* **Roderick E. Wasylishen***a* **and John F. Richardson***b*

a Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3 b Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA

The crystal structure of $Cl₃Al–O–_{PCl₃}$ contains covalent **molecular units with an essentially linear Al–O–P axis, and a similar solution structure is indicated by NMR spectroscopy.**

Binary mixtures of $AICl₃$ and $OPCl₃$ have been under examination for nearly 150 years,¹ and the existence of various formulae has been envisaged. Conductivity measurements^{2,3} and radiochlorine exchange studies⁴ imply the formation of ionic systems of the type $[OPCl₂][AlCl₄]$ ^{2,4} and $[Cl₂Al(OP Cl₃$ ₂][AlCl₄].³ The more complex salts [Al(OPCl₃)₄][AlCl₄]₃⁵ and $\overline{[Al(OPCl_3)_6][AlCl_4]_3}^{5,6}$ are postulated on the basis of Raman5 and NMR6 spectroscopic data. Most reports propose the covalent formulae, $Cl_3AIOPCl_3$,⁷⁻¹⁶ $(Cl_3A1)_2OPOl_3$,^{9,11} $Cl_3Al(OPCl_3)_2^{9,13,17}$ or $(Cl_3Al)_2(OPCl_3)_3^{7,15}$ on the basis of melting points,¹⁷ thermal analysis,¹⁶ vapour pressure measurements,^{9,10} vibrational spectroscopy,^{11,12,13} mass spectrometry,¹⁴ NMR spectroscopy^{5,7} or X-ray powder diffraction.15 Nevertheless, definitive structural assignment for any of these is not yet available.

We now report the isolation and comprehensive solid state characterization of Cl₃AlOPCl₃, which can be crystallized from CH_2Cl_2 solution.† The melting point of the crystals (183–185 °C) corresponds to the well established dystectic for a 1 : 1 stoichiometry (186.5 °C, ¹⁷ 188 °C⁸). The crystal structure reveals Cl₃AlOPCl₃ as covalent molecular units without significant intermolecular interactions. As illustrated in Fig. 1, the plane defined by $Cl(3)$, Al, O, P and $Cl(1)$ lies on a crystallographic mirror plane so that the chlorine atoms adopt an eclipsed orientation. The Cl–Al and Cl–P bond lengths are typical of four-coordinate aluminium and phosphorus, respectively. Although the Al–O bond length is consistent with those in compounds containing C_3 AlO units,¹⁸ it is significantly longer than observed for Cl_3 AlOPPh₃ [1.733(4) Å].¹⁹

The similarity of the solution and solid state 31P and 27Al NMR chemical shifts implies retention of the covalent structure in solution. Although the Raman spectroscopic features (band

Fig. 1 ORTEP view of Cl_3 AlOPCl₃. Selected bond lengths (\hat{A}) and angles (°): Al–O 1.780(4), Al–Cl(3) 2.093(2), Al–Cl(4) 2.103(2), P–Cl(1) 1.929(2), P–Cl(2) 1.929(1), O–P 1.436(3); Al–O–P 176.0(4), O–Al–Cl(3) 106.9(2), O–Al–Cl(4) 106.18(9), Cl(3)–Al–Cl(4) 112.78(5), Cl(4)–Al– $Cl(4')$ 111.47(5), $Cl(1)$ -P- $Cl(2)$ 108.07(7), $Cl(2)$ -P- $Cl(2')$ 107.71(8), O–P–Cl(1) 110.9(2), O–P–Cl(2) 111.0(1).

intensities, assignments and interpretations) described in the literature are somewhat varied, the five most intense bands for the crystalline material correspond with five of the six strong bands reported for the 1 : 1 binary mixture (591, 452, 350, 210, 168, 118 cm⁻¹),⁵ which has therefore previously been incorrectly assigned the ionic formula $[A(OPCl₃)₄][AlCl₄]$.

The most striking feature in the solid state structure of Cl_3 AlOPCl₃ is the large Al–O–P angle [176.0(4)°], which is consistent with the near C_{3v} symmetry assigned for a species in the melt on the basis of Raman spectra,5 and with the structure assigned to Br₃AlOPBr₃ on the basis of single crystal NQR and NMR spectroscopy,20 but is surprising when compared with the bent structure of F_5 AsOPCl₃ [As–O–P 136.6(4)°].²¹ While there are numerous examples of compounds containing a linear oxygen centre, most involve a transition metal.²² Those between p block elements $\{ (C_{10}H_8NO)_2Al O-Al(NOC_{10}H_8)_2^{23}$ Ph₃Si-O–SiPh₃,²⁴ [(Me₂N)₃P– O–Al(NOC₁₀H₈)₂,²³ Ph₃Si–O–SiPh₃,²⁴ [(Me₂N)₃P–
O–P(NMe₂)₃]²⁺,²⁵ Ph(OMe)C–O–AlMe(BHT)₂²⁶ and X₃E– O–PPh₃ ($X_3E = C1_3A1$, Br₃Al, $C1_3Ga$ ¹⁹} maybe imposed by substituent steric strain, but such interactions are insignificant in the title compound, as the intramolecular $Cl(AI)\cdots Cl(P)$ distances $[Cl(1) \cdots Cl(3)$ 4.645(2), $Cl(2) \cdots Cl(4)$ 4.428(2) Å are substantially greater than the sum of the van der Waals' radii for chlorine (3.6 Å) .²⁷ Moreover, the Al–P separation [3.213(2) Å] is greater than that between the silicon centres in the non-linear (Si–O–Si, 146 \degree) isoelectronic molecule Cl₃Si–O–SiCl₃ (3.13 \AA ,²⁸ also the close contact limit for silicon centres).²⁹ $Cl₃AIOPCl₃$ is a useful and simple example of a non-VSEPR structure, although novelties or exceptions to the VSEPR model³⁰ were recognized at the outset $(e.g. H_3SiOSiH_3^{31}$ and $Cl₅RuORuCl₅$, 32 and internuclear repulsions may play a role in the determination of molecular geometry.29

 $Cl₃AIOPCl₃$ is best viewed as one of an extensive series of phosphoryl coordination complexes which exhibit a range of angles $(134-180^\circ)$ at the dicoordinate oxygen centre, $22,33$ although the widest angle previously reported for complexes of OPCl₃ is 164.1(4)°.³⁴ The O–P bond in Cl₃AlOPCl₃ is typical, in that it is essentially unchanged from that reported for the gas phase structure of the free ligand OPCl₃ [1.449(5) Å].³⁵ Therefore, we envisage the coordinative interaction to involve a purely non-bonding electron pair on oxygen, and invoke a similar model to that proposed for coordination complexes containing organo-carbonyl ligands, the M–O–C bond angle of which has a shallow energy minimum and is readily distorted by a number of factors.36

The observations and conclusions presented here have important structural implications for other $OPCl₃$ complexes, including the recently reported $CI₃FeOPCl₃$.³⁷

We thank the Natural Sciences and Engineering Research Council of Canada for funding, the Alexander von Humboldt Foundation for a fellowship (N. B.) and the Killam Trust for a scholarship (R. W. S.).

Footnotes and References

* E-mail: burford@is.dal.ca

 \dagger Combination of OPCl₃ (1.95 g) and AlCl₃ (1.70 g) each in CH₂Cl₂ (25 ml) affects rapid solvation of AlCl₃. Slow evaporation of the solvent (20 min)

*Chem. Commun***., 1997 2363**

gives a white crystalline material which was washed with CH_2Cl_2 , yield 83%; recrystallised from CH₂Cl₂, yield 25%; mp 183-185 °C; Anal. Calc. Cl, 74.20; P, 10.80. Found: Cl, 74.20; P, 10.70%. IR (ν/cm^{-1}) : 1233, 973, 642, 593, 521, 441, 347, 246. Raman (25 °C, cm21): 1225, 658, 636, 590, 559, 490, 435, 348, 310, 235, 209, 168, 136, 116, 84. NMR, solution (CH_2Cl_2) : ³¹P, δ 35; ²⁷Al, δ 93 ($\Delta v_{\frac{1}{2}}$, 270 Hz). CP MAS: ³¹P, δ 33; ²⁷Al, δ 89.

Crystal data: AlCl₆OP, $M = 286.7$, monoclinic, space group $P2_1/m$, $a = 6.341(2), b = 10.087(3), c = 8.122(2)$ Å, $\beta = 111.07(2)^\circ, U = 484.7$ \AA ³, *Z* = 2, *D*_c = 1.96 g cm⁻³, μ = 19.7 cm⁻¹, *T* = 22(1) °C, 806 observed reflections $[I > 3\sigma(I)]$, $R = 0.038$; $R_w = 0.037$, GOF = 1.01. CCDC 182/658.

- 1 W. Casselmann, *Ann. Chem.*, 1852, **83**, 257; 1856, **98**, 213.
- 2 V. Gutmann and M. Z. Baaz, *Z. Anorg. Allg. Chem.*, 1959, **298**, 121.
- 3 V. Gutmann and M. Z. Baaz, *Monatsh. Chem.*, 1959, **90**, 729.
- 4 J. Lewis and D. B. Sowerby, *J. Chem. Soc.*, 1963, 1305.
- 5 F. Birkeneder, R. W. Berg and N. J. Bjerrum, *Acta Chem. Scand.*, 1993, **47**, 344.
- 6 R. G. Kidd and D. R. Truax, *Chem. Commun.*, 1969, 160.
- 7 S. Boghosian, G. Zissi and G. A. Voyiatzis, *Proc. Electrochem. Soc.*, $1994, 276$
- 8 A. S. Barabanova and B. A. Voitovich, *Russ. J. Inorg. Chem.*, 1964, **12**, 1455.
- 9 A. V. Suvorov and V. L. Shubaev, *Russ. J. Inorg. Chem.*, 1971, **16**, 166.
- 10 L. A. Nisel'son, T. D. Sokolova, Y. N. Lyzlov and S. I. Solov'ev, *Russ. J. Inorg. Chem.*, 1976, **21**, 1578.
- 11 S. Boghosian, D. A. Karydis and G. A. Voyiatzis, *Polyhedron*, 1993, **12**, 771.
- 12 H. Gerding, J. A. Koningstein and E. R. van der Worm, *Spectrochim. Acta*, 1960, **16**, 881.
- 13 E. W. Wartenberg and J. Goubeau, *Z. Anorg. Allg. Chem.*, 1964, **329**, 269.
- 14 V. L. Shubaev, A. V. Suvorov and G. A. Semenov, *Russ, J. Inorg. Chem.*, 1970, **15**, 479; A. V. Suvorov, *Koord. Khim.*, 1977, **3**, 1469.
- 15 B. A. Voitovich, A. S. Barabanova and G. N. Novitskaya, *Ukr. Khim. Z.*, 1967, **33**, 367.
- 16 I. L. Nadelyaeva, Yu. V. Kondrat'ev and A. V. Suvorov, *J. Gen. Chem. USSR*, 1974, **46**, 1413.
- 17 W. L. Groeneveld and A. P. Zurr, *Recl. Trav. Chim. Pays-Bas*, 1957, **76**, 1005; *J. Inorg. Nucl. Chem.*, 1958, **8**, 241.
- 18 See, for example, J. L. Atwood and M. J. Zaworotko, *J. Chem. Soc., Chem. Commun.*, 1983, 302.
- 19 N. Burford, B. W. Royan, R. E. v. H. Spence, T. S. Cameron, A. Linden and R. D. Rogers, *J. Chem. Soc., Dalton Trans.*, 1990, 1521.
- 20 T. Okuda, H. Ishihara, K. Yamada and H. Negita, *Bull. Chem. Soc. Jpn.*, 1978, **51**, 1273.
- 21 J. Petersen, E. Lork and R. Mews, *Chem. Commun.*, 1996, 1897.
- 22 N. Burford, *Coord. Chem. Rev.*, 1992, **112**, 1.
- 23 Y. Kushi and Q. Fernando, *J. Am. Chem. Soc.*, 1970, **92**, 91.
- 24 C. Glidewell and D. C. Liles, *J. Chem. Soc., Chem. Commun.*, 1977, 632.
- 25 A. Aaberg, T. Gramstad and S. Husebye, *Acta Chem. Scand.*, 1980, **34**, 717.
- 26 M. B. Power, S. G. Bott, D. L. Clark, J. L. Atwood and A. R. Barron, *Organometallics*, 1990, **9**, 3086.
- 27 R. Steudel, *Chemistry of the Non-Metals*, de Guyter, New York, 1977.
- 28 W. Airey, C. Glidewell, A. G. Robiette and G. M. Sheldrick, *J. Mol. Struct.*, 1971, **8**, 413.
- 29 C. Glidewell, *Inorg. Chim. Acta*, 1975, **12**, 219.
- 30 R. J. Gillespie and I. Hargittai, *The VSEPR Model of Molecular Geometry*, Allyn and Bacon, Boston, 1991; R. J. Gillespie, *Chem. Soc. Rev.*, 1992, 59.
- 31 R. C. Lord, D. W. Robinson and W. C. Schumb, *J. Am. Chem. Soc.*, 1956, **78**, 1327; A. Almenningen, O. Bastiansen, V. Ewing, K. Hedberg and M. Treatteberg, *Acta Chem. Scand.*, 1963, **17**, 7.
- 32 A. H. Mellor and N. C. Mathieson, *Acta Crystallogr.*, 1952, **5**, 185.
- 33 N. M. Karayannis, C. K. Mikulski and L. L. Pytlewski, *Inorg. Chim. Acta Rev.*, 1971, **5**, 69; M. W. G. de Bolster, *Top. Phosphorus Chem.*, 1983, **11**, 69.
- 34 G. Munninghoff, E. Hellner, M. El Essawi and K. Dehnicke, *Z. Kristallogr.*, 1978, **147**, 231.
- 35 T. Moritani, K. Kuchitsu and Y. Morino, *Inorg. Chem.*, 1971, **10**, 344.
- 36 T. J. LePage and K. B. Wiberg, *J. Am. Chem. Soc.*, 1988, **110**, 6642.
- 37 S. Boghosian, G. A. Voyiatzis and G. N. Papatheodorou, *J. Chem. Soc., Dalton Trans.*, 1996, 3405.

Received in Bloomington, IN, USA, 7th August 1997; 7/05781D