Supramolecular self-assembly of a toroidal inclusion complex, [NH₄][Co₈(MeCO₂)₈(OMe)₁₆][PF₆]

James K. Beattie, Trevor W. Hambley, John A. Klepetko, Anthony F. Masters* and Peter Turner

School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia

Diamagnetic $[NH_4][Co_8(MeCO_2)_8(OMe)_{16}][PF_6]$, a compound with eight cobalt atoms bridged by methoxy and acetato ligands so as to form a planar ring with an ammonium ion at its centre, is isolated from the reaction between cobalt(III) acetate and methanol in the presence of NH_4PF_6 .

We recently reported that slow recrystallisation of 'cobalt(III) acetate' in the presence of a halide source produced the mixed valence octanuclear compound [Co₈O₄(MeCO₂)₆(OMe)₄- $Cl_4(OH_n)_4$]·6H₂O (n = 1, 2).¹ Structural characterisation of this compound showed it to contain a central [Co₈O₈] core consisting of a linear array of three face-sharing $[Co_4O_4]$ cubane fragments. A similar mixed valence Co₈ core had previously [Co₈O₄(Methe compound been reported in $CO_{2}_{6}(OH)_{4}L_{2}[CIO_{4}]_{2}$ [L = tetradentate ligand, 1,2-bis(2,2'bipyridyl-6-yl)ethane], prepared by H2O2 treatment of Co(Me-CO₂)₂·4H₂O (3 equiv.) in the presence of L (1 equiv.) and LiClO₄.² The isolation of $[Co_8O_4(MeCO_2)_6(OMe)_4Cl_4(OH_n)_4]$ suggests that supramolecular assembly of the Co₈ core (and possibly of other architectures) may occur even in the absence of polydentate ligands. Thus, another mixed valence octanuclear derivative, $[Co_8O_4(PhCO_2)_{12}L_4]$ $[L_4 = (MeCN)_3(H_2O)]$, has been prepared by addition of aqueous H₂O₂ to a dmf solution of cobalt benzoate, followed by recrystallization from CH_2Cl_2 -MeCN.^{3,4} This material has a $[Co_8O_4]^{12+}$ framework in which trigonally bipyramidally coordinated CoII atoms are bound to the oxygens of a central [Co^{III}₄O₄]⁴⁺ cubane.

We report here the isolation and structural characterization of a second octanuclear material from 'cobalt(III) acetate', [NH₄][Co₈(MeCO₂)₈(OMe)₁₆][PF₆] 1. Reaction of 'cobalt(III) acetate' $(0.5 \text{ g})^5$ and NH₄PF₆ (0.61 mmol in 3 ml) in methanol over one week at ambient temperature gave an as yet unidentified green microcrystalline solid and large dark green, plate-like crystals of 1. Pure 1 was obtained by decanting the remaining solution followed by rinsing and decanting diethyl ether suspensions of the microcrystalline solid. The initial yield of 1 was typically ca. 5% (0.03 mmol) based on NH₄PF₆. Although the yields have not been optimised, further, larger, crops of 1 and of the microcrystalline solid were obtained after leaving the filtrate for a period of several days to several weeks. Crystals suitable for single crystal X-ray diffraction analysis were obtained by leaving the reaction mixture undisturbed for several weeks. To prevent decomposition the crystals were kept under diethyl ether and subsequently used in single crystal X-ray diffraction measurements.[†] Single crystal X-ray diffraction[‡] showed that 1 consists of a molecule of [Co₈(Me-CO₂)₈(OMe)₁₆] which functions as an inclusion host for an NH_{4^+} cation. Charge balance is provided by a PF_6^- anion in the lattice. The [Co₈(MeCO₂)₈(OMe)₁₆] molecule has a highly symmetric toroidal shape (Fig. 1), containing four [Co2(µ- $MeCO_2$)(μ -OMe)₂] units, forming eight edge-shared CoO₆ distorted octahedra. The cobalt atoms are situated at the vertices of a near regular planar octagon. Each pair of cobalt atoms is bridged by an acetate ligand and two stereochemically distinct methoxide ligands, one methoxide on either side of the Co_8 plane. The acetate ligands on adjacent pairs of cobalt atoms are alternatively above and below and at approximately 30° to the

Co₈ plane. Of the eight methoxide ligands on each side of the Co_8 plane, four have O–C bonds perpendicular to the Co_8 plane, whereas the C-O bonds of the other four methoxide ligands are directed to the periphery of the molecule. This latter set of methoxide ligands eclipses the acetate ligands on the other side of the Co₈ plane. On each side of the Co₈ plane, then, the methoxide C-O bonds are alternatively perpendicular to (type A), and at approximately 30° to (type B) the Co₈ plane, similar to the orientation of the methoxide ligands in $[NBu_4]_2$ - $[V_8O_8(OMe)_{16}(C_2O_4)]$.⁶ The NH_4^+ ion is situated at the centre of the $[Co_8(MeCO_2)_8(OMe)_{16}]$ molecule, with the nitrogen atom in the Co₈ plane. The NH₄⁺ protons could not be located. Adjacent cobalt atoms are separated by an average of 2.863 Å, slightly longer than the hydroxy- and alkoxy-bridged Co--Co separations in the hydroxy-bridged dimers and most of the oxocentred trimers.⁷ The Co-O(MeCO₂) distances are within the range 1.885(6)-1.916(6) Å, as observed in the dinuclear and trinuclear cobalt(III) complexes.7 Bridging Co-O(OMe) dis-

Fig. 1 ORTEP (25% probability)¹⁷ representations of (*a*) the octanuclear $[Co_8(O_2CMe)_8(OMe)_{16}]$ host molecule and the guest NH₄⁺ cation, showing the partial labelling scheme, viewed perpendicular to the Co₈ plane, and (*b*) the asymmetric unit viewed along the Co₈ plane

tances and angles are all similar and within the ranges 1.878(6)-1.918(5) Å and $97.7(4)-98.6(3)^{\circ}$, respectively. The Co₈ ring has a diameter of *ca*. 7.5 Å, the O₄ rings of the type A methoxides have diameters of *ca*. 5.3 Å.

The ¹H and ¹³C NMR solution spectra are consistent with the solid state structure.§ Both spectra indicate a single acetate environment and equal populations of two methoxide environments. The ¹H NMR spectrum in CD₃OD includes a broad peak centred at δ 7.7 attributable to the protons of the NH₄⁺ ion. This peak is shifted some 0.5 ppm downfield from that of NH₄PF₆ in CD₃OD (δ 7.2). The NMR spectra and the stoichiometry indicate that [Co₈(MeCO₂)₈(OMe)₁₆] is diamagnetic.

Topological analogues of the [Co8(MeCO2)8(OMe)16] structure have been reported in vanadium $\{[V_8O_8(OMe)_{16}(C_2O_4)]^2\}$ $[MeCN(V_{12}O_{32})]^{4-},^{6,8}$ chromium $\{[Cr_8F_8(Me_3CCO_2)_{16}]\},^{9}$ molybdenum { $[Mo_8O_{16}(OR)_8(C_2O_4)]^{2+}$; R = Me, Et},^{6,10} iron ${[Fe_8F_8(Me_3CCO_2)_{16}]}^{11}$ and copper $\{[Cu_8L_8(OH)_8];$ L = 3,5-dimethylpyrazole}¹² chemistries. The M₈ (M = V, Cr, Mo, Fe, Cu) rings of these compounds have diameters of some 7–9 Å.^{6,9–12} The internal cavities of the similarly planar, cyclic, octameric $[Cu_8L_8(OH)_8]$ (L = 3,5-dimethylpyrazole) and $[M_8F_8(Me_3CCO_2)_{16}]$ (M = Cr, Fe) have diameters of ca. 6–7 Å.9,11,12 The related [Mo₈O₁₆(OMe)₈(PMe₃)₄] has a puckered Mo₈ ring with alternating five- and six-coordinated molybdenum atoms.13 In some cases, solvent molecules are occluded in the structure, in others, oxalato ligands bridge four alternating metal atoms about the ring. The nitrogen atom of occluded Et₂NH is coplanar with the Fe₈ ring of [Fe₈F₈(Me₃CCO₂)₁₆],¹¹ whereas occluded acetones are situated on either side of the Cr ring of [Cr₈F₈(Me₃CCO₂)₁₆].⁹ However, little precedent exists for this structural motif in cobalt chemistry (although compounds containing Co6 rings are known14-16) and its association with the chemistry of 'cobalt(III) acetate' is completely unanticipated. It is not yet clear whether [Co8(Me-CO₂)₈(ÔMe)₁₆] self assembles (possibly about a cationic template) as a result of a reaction between one or more constituents of 'cobalt(III) acetate' and methanol, or whether a species such as [Co₈(MeCO₂)₈(OH)₁₆] self assembles in 'cobalt(III) acetate' and reacts with alcohols analogously to other species derived from 'cobalt(III) acetate'. What is clear is that the deceptively simple 'cobalt(III) acetate' can form a wide variety of ionic and neutral species and that the driving force for self assembly in these systems must be considerable, even in the presence of only the ubiquitous acetate ligand. A detailed study of related inclusion complexes will be published later.

We thank the Australian Research Council and the School of Chemistry, University of Sydney (scholarship to J. A. K.) for support.

Footnotes and References

* E-mail: masters@chem.usyd.edu.au

† Elemental analysis: calc. for $C_{32}H_{76}Co_8F_6NO_{32}P \cdot 0.5C_4H_{10}O$: C, 24.9; H, 5.0; N, 0.9. Found: C, 25.0; H, 4.9; N, 0.9%.

[‡] Crystal data for Co₈(MeCO₂)₈(OMe)₁₆·NH₄·PF₆·1.4C₄H₁₀O, C_{37.60}Co₈H₈₆F₆NO_{33.40}P: M = 1703.11, monoclinic, space group $P2_1/m$ (no. 11), a = 8.621(1), b = 25.345(6), c = 16.368(3) Å, $\beta = 104.81(1)^\circ$, U = 3457(1) Å³, F(000) = 1733.60, Z = 2, $D_c = 1.632$ g cm⁻³, Mo-Kα radiation, $\lambda = 0.710.69$ Å, μ (Mo-Kα) = 19.90 cm⁻¹; R value 0.048 (R_w 0.042) for 3022 absorption-corrected reflections with $I > 3\sigma(I)$. CCDC 182/664.

§ ¹H NMR (200 MHz, CD₃OD, TMS reference) δ 7.74 (1 H, br s, NH₄), 2.45 (6 H, s, μ-O₂CMe), 2.23 (6 H, s, μ-OMe), 2.16 (6 H, s, μ-OMe); ¹³C NMR (200 MHz, CD₃OD, TMS reference) δ 192.31 (μ-O₂CMe), 52.89 (μ-OMe), 51.67 (μ-OMe), 24.02 (μ-O₂CCH₃); ESIMS (90 V) *m*/*z* 1458.1 ([M - PF₆]⁺).

- 1 J. K. Beattie, T. W. Hambley, J. A. Klepetko, A. F. Masters and P. Turner, *Polyhedron*, 1997, **16**, 2109.
- 2 V. A. Grillo, Z. Sun, K. Folting, D. N. Hendrickson and G. Christou, *Chem. Commun.*, 1996, 2233.
- 3 K. Dimitrou, K. Folting, W. E. Streib and G. Christou, J. Chem. Soc., Chem. Commun., 1994, 1385.
- 4 K. Dimitrou, J.-S. Sun, K. Folting and G. Christou, *Inorg. Chem.*, 1995, 34, 4160.
- 5 S. Uemura, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 2565.
- 6 Q. Chen, S. Liu and J. Zubieta, Inorg. Chem., 1989, 28, 4433.
- 7 J. K. Beattie, T. W. Hambley, J. A. Klepetko, A. F. Masters and P. Turner, *Polyhedron*, 1996, **15**, 2141.
- 8 V. W. Day, W. G. Klemperer and O. M. Yaghi, J. Am. Chem. Soc., 1989, 111, 5959.
- 9 N. V. Gerbeleu, Y. T. Struchkov, G. A. Timko, A. S. Batsanov, K. M. Indrichan and D. A. Popovich, *Dokl. Acad. Nauk SSSR*, 1990, 313, 1459.
- 10 Q. Chen, S. Liu and J. Zubieta, Angew. Chem., Int. Ed. Engl., 1988, 27, 1724.
- 11 N. V. Gerbeleu, Y. T. Struchkov, D. S. Manole, G. A. Timko and A. S. Batsanov, *Dokl. Akad. Nauk SSSR*, 1993, **331**, 184.
- 12 G. A. Ardizzoia, M. A. Angaroni, G. L. Monica, F. Cariati, M. Moret and N. Masciocchi, J. Chem. Soc., Chem. Commun., 1990, 1021.
- 13 D. J. Darensbourg, R. L. Gray and T. DeLord, *Inorg. Chim. Acta*, 1985, 98, L39.
- 14 G. E. Lewis and C. S. Kraihanzel, Inorg. Chem., 1983, 22, 2895.
- 15 R. Schmid, J. Beck and J. Strahle, Z. Naturforsch., Teil B, 1987, 42, 911.
- 16 B. Cornils, I. Forster, C. Kruger and Y.-H. Tsay, *Transition Met. Chem.*, 1976, **1**, 151.
- 17 C. K. Johnson, ORTEP, a Thermal Ellipsoid Plotting Program, Report ORNL-5138, Oak Ridge National Laboratories, TN, 1976.

Received in Cambridge, UK, 7th October 1997; 7/07228G