Self-assembling tetranuclear copper(II) complex of a bis-bidentate Schiff base: double-helical structure induced by aromatic π ··· π and CH··· π interactions

Noboru Yoshida,*a Hiroki Oshio^b and Tasuku Ito^b

^a Laboratory of Molecular Functional Chemistry, Division of Material Science, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060, Japan

^b Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-77, Japan

The synthesis and structure of a tetranuclear copper(II) complex of a bis-N,O-bidentate Schiff base is reported; two types of copper(II) centers and the preference for two conformational degrees of freedom in the ligand lead to the unique formation of a novel supramolecular architecture not requiring a preorganized synthetic approach.

Self-assembly and molecular recognition appear to be essential factors for the construction of supramolecular architectures utilizing the formation of non-covalent bonds in solution.¹ The use of metal ions with specific preferences for particular coordination geometries has been developed rapidly in order to produce non-covalently organized structures, resulting in self-assembly of target ligands.² Many types of oligopyridines have been used because of their preorganized characteristics in self-assembling processes.³

Recently, new ligand systems have been exploited to construct unprecedented structures formed by self-assembling processes in solution and in the solid phase.^{4,5} The requirement of the supramolecular structure is principally controlled by the appropriate combination of various types of weak non-covalent interactions and the geometrical preference of the metal ion. Our recent investigation using bis-bidentate Schiff base ligands (Scheme 1) allows for the synthesis of a variety of metal-assisted supramolecular structures. A dinuclear triple-helical Zn^{II} complex of L¹⁷,⁵ a dinuclear double-helical Cu^{II} complex of L¹⁶,⁶ and polynuclear Zn^{II} complexes of L¹⁶,⁵ have been synthesized.

Here we describe a novel and general strategy for the construction of metal-assisted supramolecular architectures using ligand L⁸. This architecture is prepared readily utilizing the weak aromatic $\pi \cdots \pi$ and CH $\cdots \pi$ interactions operating between the bridging groups of the bis-bidentate Schiff bases (Scheme 2).

The Schiff base ligand L^8 contains two N,O-bidentate chelating moieties linked *via* the azomethine groups with bis(3-

Scheme 1

Scheme 2

aminophenyl)sulfone (Scheme 1). Reaction of L⁸ with Cu(Me-CO₂)₂·H₂O in a 1:1 molar ratio in hot ethanol (*ca.* 60–70 °C) afforded a light-green solid **1**.† Elemental analysis suggests the formation of a Cu^{II}:L⁸ 2:2 complex and fast-atom bombardment mass spectroscopy (FABMS) also indicated a 2:2 complex for **1**.‡ However, positive-ion electrospray MS (*m*/*z* 2073.5) suggested the existence of a 4:4 complex for **1**. The electronic absorption spectrum of **1** shows a π – π * band at 379.5

Fig. 1 Crystal structure of [Cu(H₋₁L⁸)]₄ 1

Fig. 2 Two main conformers of L⁸

nm in the visible region which indicates deprotonation of the OH groups and N,O-coordination of $Cu^{\rm II,7}$

Single crystals were obtained from chloroform-diethyl ether. An X-ray diffraction study confirms the formation of the Cu^{II}: L⁸ 4:4 structure as shown in Fig. 1.§ The tetranuclear double helical structure appears to be stabilized by CH- π and π - π aromatic interactions (3.2–3.9 Å) between the bridging groups ($-C_6H_4SO_2C_6H_4-$). Complex 1 contains four Cu^{II} ions and four ligands. Two Cu^{II} ions at the top [Cu(1)] and bottom [Cu(4)] of the tetranuclear $(CuL^8)_4$ core adopt a square-planar (SP) coordination geometry, whereas the two remaining Cu^{II} ions [Cu(2), Cu(3)] in the middle adopt a tetrahedral (T_d) coordination geometry. Each CuII ion is coordinated by N,Obidentate sites originating from two different ligands. Each ligand interacts with two CuII ions with a different coordination geometry. Furthermore, two types of conformations of L⁸ are observed in this tetranuclear core (Fig. 2). The conformations of $L^{8}(1)$ and $L^{8}(4)$ are *anti*-closed ($E_{\text{steric}} = -27.58 \text{ kcal mol}^{-1}, 1$ cal = 4.184 J) (Fig. 2), whereas the conformations of L⁸(2) and L⁸(3) are similar and *anti*-opened ($E_{\text{steric}} = -27.16$ kcal mol^{-1}).¶

Fig. 3 shows selected bond lengths and angles around the four Cu^{II} centers of the tetranuclear core of **1**. The Cu–N distances lie between 1.968(6)–2.024(6) Å and Cu–O is in the range 1.858(6)–1.903(5) Å. Angles O–Cu(1)–O, N–Cu(1)–N N–Cu(1)–O [O–Cu(4)–O, N–Cu(4)–N, N–Cu(4)–O] are in the range 174.9(2), 171.4(2), 88.1(2)–91.4(2)° [170.4(3), 177.6(2), 88.6(2)–91.8°], respectively. Thus, the coordination geometries around Cu(1) and Cu(4) are almost square-planar. On the other hand, O–Cu(2)–O, N–Cu(2)–N, N–Cu(2)–O [O–Cu(3)–O, N–Cu(3)–N, N–Cu(3)–O] angles are 89.6(2), 99.2(2), 147.2(2)–148.8(2)° [89.2(2), 100.1(2), 144.6(2)–148.7(2)°] which show a distorted tetrahedral geometry around Cu(2) and Cu(3). Four Cu^{II} ions having different coordination spheres lie almost in one plane and in a rhombus arrangement with Cu--Cu

Fig. 3 Coordination geometries around the four $\mathrm{Cu^{II}}$ ions of 1

distances between 4.043 and 7.659 Å. The sum of the interior angles is 353.26°. Other metal complexes with Zn^{II} , Ni^{II} and Co^{II} which are insoluble in most organic solvents appear to form $(1:1)_n$ polymeric structures (Scheme 2).

Flexible geometry of Cu^{II} (*SP* or T_d) and the flexible conformational freedom in the ligand lead to CH– π and π – π aromatic interactions between the bridging groups and the tetranulear double-helical structure. These conformational preferences in the ligand and metal-coordination geometry are an unusual example in metallosupramolecular chemistry. The subtle change in the bridging group leads to an unprecedented organized structure in the absence of a preorganized synthetic approach. The development of new ligand systems using Schiff base series is now in progress.

Footnotes and References

* E-mail: nyoshida@high.hokudai.ac.jp

§ Crystal data for 1: $C_{104}H_{72}Cu_4N_8O_{16}S_4$, $0.50 \times 0.30 \times 0.25$ mm, M = 2072.18, brown prismatic crystal, monoclinic, space group $P_{2_1/c}$, a = 18.026(2), b = 23.450(3), c = 22.743(2) Å, $\beta = 90.299(9)^\circ$, U = 9613(1) Å³, Z = 4, $D_c = 1.432$ g cm⁻³, μ (Mo-K α) = 9.64 cm⁻¹, F(000) = 4240.17487 data collected at -100 °C on a Rigaku AFC 7S four circle diffractometer equipped with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods with SHELX-86 (G. M. Sheldrick, University of Göttingen, 1986) and Fourier techniques, and refined by full-matrix least-squares on F^2 data using SHELXL-93 (G. M. Sheldrick, University of Göttingen, 1993). and converged at $R_1 = 0.0667$, $wR_2 = 0.1652$. CCDC 182/663.

¶ Although L⁸ can adopt many conformations, molecular mechanics (MM2) calculations revealed the four minimum-energy structures as *anti*-closed and *anti*-opened conformers. These two isomers have almost the same energy. Other minimum-energy structures, *syn*-opened ($E_{\text{steric}} = -27.4973$ kcal mol⁻¹) and *syn*-closed ($E_{\text{steric}} = -28.820$ kcal mol⁻¹) conformers have similar energy.

- 1 J.-M. Lehn, Supramolecular Chemistry, Concepts and Perspectives, VCH, Weinheim, 1995; D. Philips and J. F. Stoddart, Angew. Chem., Int. Ed. Engl., 1996, **35**, 1154 and references therein.
- 2 C. Piguet, G. Bernardinelli, A. E. Williams and B. Bocquet, Angew. Chem., Int. Ed. Engl., 1995, 34, 582.
- 3 E. C. Constable, A. J. Edwards, P. R. Raithby, D. R. Smith, J. V. Walker and L. Whall, *Chem. Commun.*, 1996, 2551 and references therein.
- 4 J. C. Jeffery, P. L. Jones, K. L. N. Mann, E. P. Psillakis, J. A. McCleverty, M. D. Ward and C. M. White, *Chem. Commun.*, 1997, 175; C. M. Hartshorn and Peter J. Steel, *ibid.*, 1997, 541; D. M. L. Goodgame, S. Menzer, A. M. Smith and D. J. Williams, *ibid.*, 1997, 339; M. J. Hannon, C. L. Painting and W. Errington, *ibid.*, 1997, 307; P. N. W. Baxter, G. S. Hanan and J.-M. Lehn, *ibid.*, 1996, 2019; R. Bhalla, M. Helliwell and C. D. Garner, *ibid.*, 1996, 921; P. C. M. Duncan, D. M. L. Goodgame, S. Menzer and D. J. Williams, *ibid.*, 1996, 2127; M. Albrecht and S. Kotila, *ibid.*, 1996, 2309; T.Beissel, R. E. Powers and K. N. Raymond, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 1084; R. W. Saalfrank, N. Loew, F. Hampel and H.-D. Stachel, *ibid.*, 1996, **35**, 2209; A. J. Amoroso, J. C. Jeffery, P. L. Jones, J. A. McCleverty, P. Thornton and M. D. Ward, *ibid.*, 1995, **34**, 1443; E. J. Enemark and T. D. P. Stack, *ibid.*, 1995, **34**, 996.
- 5 N. Yoshida and K. Ichikawa, Chem. Commun., 1997, 1091.
- 6 N. Yoshida and H. Kuma, unpublished work.
- 7 N. Yoshida and M. Fujimoto, Bull. Chem. Soc. Jpn., 1976, 49, 1557.

Received in Cambridge, UK 28th August 1997; 7/06284B