Asymmetric aldol reaction of 2-cyanopropionates catalysed by *trans*-chelating chiral diphosphine ligand TRAP–rhodium(I) complex

Ryoichi Kuwano,† Hiroshi Miyazaki and Yoshihiko Ito*

Division of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan

trans-Chelating chiral diphosphine TRAP ligands bearing *P*-aromatic groups are effective for Rh^I-catalysed asymmetric aldol reaction of 2-cyanopropionates with an aldehyde to give the corresponding aldol adduct with up to 93% ee.

The asymmetric aldol reaction provides a most useful tool for stereoselective construction of α -substituted β -hydroxy carbonyl units with vicinal chiral centres, and is widely used in the synthesis of complex organic molecules.¹ Recently, it was found that some low-valent transition metal complexes catalyse aldol and Michael reactions with cyano compounds having active α -methylene groups,² and we developed a highly enantioselective Michael reaction of 2-cyanopropionates catalysed by a rhodium(I) complex coordinated with *trans*-chelating chiral diphosphine TRAP (1).^{3–6} The transition metal

catalysed reactions involve enolate intermediates of 2-cyanopropionates coordinating to the metal atom through the cyano nitrogen, which then react directly with electrophiles.² Herein, we report the catalytic asymmetric aldol reaction of 2-cyanopropionates **2** using a TRAP–Rh¹ complex.

Asymmetric aldol reactions of 2 with paraformaldehyde (10 wt% in water) were carried out with a rhodium(I) catalyst generated in situ from Rh(acac)(CO)2 and (S,S)-(R,R)-PhTRAP 1a (Table 1).[‡] The enantioselectivity of the asymmetric aldol reaction was heavily dependant upon reaction solvent. Bu₂O was the solvent of choice.§ Bulky ester groups of 2 are essential to attain high enantioselectivities for the aldol reactions (entries 1-5). 2-Cyanopropionates 2d and 2e bearing bulky secondary alkyl ester group gave aldol adducts (S)-3d and (S)-3e in 91 and 93% ee, respectively. Surprisingly, use of formalin hardly affected the enantiopurity of 3d (93% ee). The enantioselectivity of the aldol reaction of 2d was slightly increased by using 1b, which has electron-donating aromatic groups attached to the phosphorus atoms (entry 6), while electron-withdrawing substituents on the P-aromatics group gave lower enantioselectivity and reactivity (entry 7). Conceivably, the P-aromatic substituents of TRAP play an important role in the enantioface selection of enolate of 2 coordinated to the rhodium atom, because ligands 1d and 1e with P-aliphatic substituents showed lower enantioselectivities (entries 8 and 9).

Other aldehydes **4a–d** were subjected to asymmetric aldol reaction with (S,S)-(R,R)-PhTRAP–Rh^I catalyst (Table 2). The aldol reactions of ethyl ester **2b** and isopropyl ester **2c** with acetaldehyde **4a** resulted in not only low enantioselectivities but also low diastereoselectivities (entries 1 and 2). However, the use of **2d** gave *anti-(2S,3S)*-**7a** (86% ee) with good *anti-*

selectivity (*anti*: syn = 81:19) (entry 3). The aldol reaction of **2d** with **4b** proceeded, but with lower stereoselectivity (entry 4). Benzaldehyde **4c** did not react at all (entry 5). However, aldehyde **4d** smoothly reacted with **2d** giving a mixture of *anti*-(2*S*,3*R*)-**7d** (91% ee) and *syn*-(2*S*,3*S*)-**7d** (63% ee) in a ratio of 68:32 (entry 6).

The observed stereochemistry at the 2-position of the aldol products suggests that (S,S)-(R,R)-PhTRAP on the catalyst can differentiate between the steric bulkiness of the α -Me and ester substituents of 2, with one of the P-phenyl substituents blocking the approach of the aldehyde to the si-face of the enolate coordinated to the rhodium atom.⁴ The preferential formation of anti-7 in the aldol reactions of 2d with 4 may suggest that this reaction proceeded through antiperiplanar transition state **TS1**. which avoids the steric repulsion between the aldehyde substituent (R) and the bulky CHPri₂ ester (Fig. 1). The lack of diasereoselectivity in the reactions with 2b and 2c may be due to the lesser steric repulsion between the R and ester groups, which does not produce any enantioface selection by the aldehyde. Synclinal transition state TS2 giving an anti-aldol would be sterically unfavourable due to the steric interaction between R and one of P-phenyl groups of 1a.

In conclusion, we have accomplished the highly enantioselective aldol reaction of 2 with some aldehydes. Further studies are currently in progress to improve the catalyst's efficiency and to widen its applicability to a variety of aldehydes.

Table 1 Asymmetric aldol reaction of 2 with formal dehyde catalysed by 1–Rh¹ complex^{α}

нсно	+	$ \begin{array}{c} 0 \\ MC \\ Me \\ Ca R = Me \\ b R = Et \\ c R = Pr^{i} \\ d R = CHPr^{i}_{r}. $	Rh(aca (<i>S</i> , <i>S</i>)-(<i>R</i> , <i>R</i>) Bu ₂ O	c)(CO) ₂ - 1 (1 mol -H ₂ O	^{%)} HO Me Me 3a R = b R = c R = d R =	HO Me^{i} CN 3a R = Me b R = Et $c R = Pr^{i}$ $d P = CHPr^{i}$		
		$\mathbf{e} \mathbf{R} = \mathbf{CHBu}_2^t$			e R =	= CHBu ^t ₂		
					Products 3			
Entry	2	TRAP $(1)^b$	<i>T</i> /°C	t/h	Yield (%) ^c	Ee (%) ^{<i>d,e</i>}		
1 2 3 4 5 6 7	2a 2b 2d 2d 2d 2d 2d 2d 2d 2d	1 1a 1 1a 1 1a 1 1a 1 1a 1 1b 1 1c	$-30 \\ -30 \\ -10 $	100 42 90 24 24 24 24 24	67 85 86 82 86 87 44	35 74 (-) 78 (-) 91 (-) 93 (-) 92 (-) 74 (-)		
8 9	20 20 20	l 1d l 1e	-10 -10 -10	24 24 24	58 86	3 (-) 22 (-)		

^{*a*} All reactions were carried out in Bu₂O. **2** (0.50 M)–formaldehyde– Rh(acac)(CO)₂–**1** = 1:1.3:0.010:0.011. ^{*b*} (*S*,*S*)-(*R*,*R*)-**1** was used. ^{*c*} Isolated yield. ^{*d*} Determined by HPLC analysis. ^{*e*} The sign of the specific rotation of **3** in CHCl₃ is given in parentheses. Table 2 Asymmetric aldol reaction of 2 with 4 catalysed by (S,S)-(R,R)-1a-Rh^I complex^a

	R ¹ CHO	+	NC Me	OR ²	Rh(acac)(CO) (<i>S</i> , <i>S</i>)-(<i>R</i> , <i>R</i>)-1a (1 n Bu ₂ O	h₂, OF nol%) R ¹ Me	H O OR ² + anti	R ¹ Me ¹ Syn	DR ²
	4a R ¹ = b R ¹ = c R ¹ = d R ¹ =	Me Et Ph CO ₂ Et	2b R = c R = d R =	Et Pr ⁱ CHPr ⁱ 2		5 6 7a–d	$R^{1} = Me, R^{2} =$ $R^{1} = Me, R^{2} =$ $R^{1} = Me, Et, P$	Et Pr ⁱ Ph, CO ₂ Et, R ² = 0	CHPr ⁱ 2
								Ee (%) ^{d} (config.)	
								Ee $(\%)^d$ (con	ifig.)
Entry	4	2	<i>T</i> /°C	<i>t/</i> h	Product	Yield (%) ^b	anti : syn ^c	$Ee (\%)^d$ (con anti	syn
 Entry 1	4 4a	2 2b	<i>T</i> /°C	<i>t/</i> h	Product 5	Yield (%) ^{<i>b</i>}	anti : syn ^c 45/55	$\frac{\text{Ee } (\%)^d (\text{con})^d}{anti}$	ffig.) syn 23
 Entry 1 2	4 4a 4a	2 2b 2c	<i>T</i> /°C	<i>t/</i> h	Product 5 6	Yield (%) ^b 63 61	anti : syn ^c 45/55 47/53	$\frac{\text{Ee } (\%)^d (\text{con})^d}{anti}$ 31 55	fig.) syn 23 50
 Entry 1 2 3	4 4a 4a 4a	2 2b 2c 2d	<i>T</i> /°C	<i>t/</i> h 24 24 24	Product 5 6 7a	Yield (%) ^b 63 61 67	<i>anti</i> : <i>syn</i> ^c 45/55 47/53 81/19	$\frac{\text{Ee } (\%)^d (\text{con})^d}{anti}$ 31 55 86 (2S,3S)	fig.) <u>syn</u> 23 50 33
 Entry 1 2 3 4	4 4a 4a 4b ^e	2 2b 2c 2d 2d	<i>T</i> /°C	t/h 24 24 24 48	Product 5 6 7a 7b	Yield (%) ^b 63 61 67 76	<i>anti</i> : <i>syn^c</i> 45/55 47/53 81/19 75/25		fig.) syn 23 50 33 10
 Entry 1 2 3 4 5	4 4a 4a 4b ^e 4c	2 2b 2c 2d 2d 2d 2d	<i>T</i> /°C	t/h 24 24 24 48 72	Product 5 6 7a 7b No reaction	Yield (%) ^b 63 61 67 76	<i>anti</i> : <i>syn^c</i> 45/55 47/53 81/19 75/25 —		syn 23 50 33 10

^{*a*} All reactions were carried out in Bu₂O. **2** (0.25 M)–**4**–Rh(acac)(CO)₂–**1a** = 1:7.5:0.010:0.011 unless otherwise noted. ^{*b*} Isolated yield of a mixture of *anti-* and *syn-*aldols. ^{*c*} Determined by ¹H NMR analysis. ^{*d*} Determined by HPLC analysis. ^{*e*} 10 equiv. of **4b** was used. ^{*f*} 2.0 equiv. of **4d** was used.

Footnotes and References

† E-mail: kuwano@sbchem.kyoto-u.ac.jp

[‡] *Typical procedure*: A suspension of paraformaldehyde (100 mg) in H₂O (1.0 ml) was heated under reflux for 1 h, giving a clear aqueous solution of paraformaldehyde. A solution of Rh(acac)(CO)₂ (5.0 µmol) and (*S*,*S*)-(*R*,*R*)-**1a** (5.4 µmol) in 2.0 ml of Bu₂O was stirred at room temperature for 10 min. To the solution was successively added **2** (0.50 mmol) and the freshly prepared solution of paraformaldehyde in water (0.67 mmol) at -10 °C. The mixture was stirred at -10 °C. After completion of the reaction, the mixture was diluted with brine, and extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄ and evaporated. After passing through a short silica gel column (EtOAc), the residue was purified *via* medium-pressure liquid chromatography MPLC.

§ The enantioselectivities of the aldol reactions of **2b** at 0 °C in various solvents were as follows: MeOH: 0; CH_2Cl_2 : 11; toluene: 1; THF: 47; Et_2O : 54; Bu_2O : 60% ee.

1 For a review of catalytic asymmetric aldol reactions, see M. Sawamura and Y. Ito, in *Catalytic Asymmetric Synthesis*, ed. I. Ojima, VCH, New York, 1993, p. 367.

- T. Naota, H. Taki, M. Mizuno and S.-I. Murahashi, J. Am. Chem. Soc., 1989, 111, 5954; S.-I. Murahashi, T. Naota, H. Taki, M. Mizuno, H. Takaya, S. Komiya, Y. Mizuho, N. Oyasato, M. Hiraoka, M. Hirano and A. Fukuoka, J. Am. Chem. Soc., 1995, 117, 12436; S. Paganelli, A. Schionato and C. Botteghi, Tetrahedron Lett., 1991, 32, 2807; H. Nemoto, Y. Kubota and Y. Yamamoto, J. Chem. Soc., Chem. Commun., 1994, 1665.
- 3 TRAP = (*R,R*)-2,2"-Bis[(*S*)-1-(dialkylphosphino)ethyl]-1,1"-biferrocene: M. Sawamura, H. Hamashima and Y. Ito, *Tetrahedron: Asymmetry*, 1991, **2**, 593; M. Sawamura, H. Hamashima, M. Sugawara, R. Kuwano and Y. Ito, *Organometallics*, 1995, **14**, 4549.
- 4 M. Sawamura, H. Hahashima and Y.Ito, J. Am. Chem. Soc., 1992, 114, 8295; Tetrahedron, 1994, 50, 4439; M. Sawamura, H. Hamashima, H. Shinoto and Y. Ito, Tetrahedron Lett., 1995, 36, 6479.
- 5 K. Inagaki, K. Nozaki and H. Takaya, Synlett, 1997, 119.
- 6 Asymmetric allylic alkylation with TRAP-Rh-Pd catalyst system, see M. Sawamura, M. Sudoh and Y. Ito, J. Am. Chem. Soc., 1996, **118**, 3309.

Received in Cambridge, UK, 15th September 1997; 7/06662G