Formation of an unusual tetralithium diplatinum complex $[Pt(C \equiv CBu^{t})_{2}(PPh_{2}O)_{2}Li_{2}(\mu + H_{2}O)(Me_{2}CO)_{2}]_{2}$ containing μ_{3} -PPh₂O⁻ Ligands

Larry R. Falvello,^a Juan Forniés,^{*a} Elena Lalinde,^{*b} Antonio Martín,^a Teresa Moreno^b and Jorge Sacristán^b

^a Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain ^b Departamento de Química, Universidad de La Rioja, 26001, Logroño, Spain

The very unusual complex [Pt(C=CBut)2(PPh2O)2Li2(µ- H_2O)(Me₂CO)₂]₂ 2 is obtained by the reaction of 'Li₂[Pt(C=CBu^t)₄]' with an excess of PPh₂H in acetoneethanol and possesses an unusual linear chain of four Li atoms sandwiched between two square planar dianionic units trans-OPPh₂{Pt(C=CBu^t)₂}PPh₂O⁻, to which it is bound through μ_3 -PPh₂O⁻ bridging ligands.

Platinum-alkynyl chemistry has long been the subject of intensive study¹ and recently there has been a growing interest in the synthesis of polymetallic species derived from dianionic $(C_2^{2-}, C_2RC_2^{2-}, etc.)$ or substituted (pyridyl, bipyridyl, ruthenocenyl, ferrocenyl, etc.) building blocks due to their increasing importance in materials science.^{1,2} The family of alkynyl Pt complexes, particularly that of mononuclear heteroleptic derivatives which are stabilised by tertiary phosphine ligands is now quite large.^{1,2d,e,3} The chemistry of monomeric derivatives containing other types of ligands is comparatively less developed^{1,3a,4} and analogous complexes containing secondary phosphines as additional ligands have not been explored. The presence of acidic protons in this type of ligand (PR₂H) probably prevents the use of the most general synthetic routes such as the reaction of halides with alk-1-ynes (base, CuIcatalysed)^{1,2d,e,3b,4d} or with metal acetylide reagents.^{1,4} Recently, we have reported the preparation of trans-[Pt(C=CBut)₂(PPh₃)₂]⁵ in high yield by partial displacement of the alkynyl groups with PPh3 from the reactive species Li₂[Pt(C=CBu^t)₄], prepared 'in situ'. We report here the application of this method to the diphenylphosphine ligand, which allows not only the preparation of the homologous complex *trans*-[Pt(C \equiv CBu^t)₂($\hat{P}Ph_2H$)₂] **1** but also the synthesis of an unexpected tetralithium diplatinum compound 2, which contains lithium atoms in the form of an unusual linear chain of four Li atoms stabilised by μ_3 -PPh₂O⁻ and μ -OH₂ bridging ligands. Complex 2 represents the second alkynyl-platinum lithium complex crystallographically characterised,⁶ and also the second example reported containing one small chain of four sandwiched Li ions.7

The tetraalkynylplatinatelithium species 'Li₂[Pt(C=CBut)₄]' was initially formed by addition of LiC=CBut to [PtCl₂(tht)₂] (molar ratio 5.5:1) as previously reported.^{5,8} Treatment of the colourless solution obtained by dissolving Li2[Pt(C=CBut)4] in acetone-ethanol with an excess of PPh₂H (1:3, N₂ atmosphere) causes the slow precipitation (7 h of stirring) of trans- $[Pt(C \equiv CBu^t)_2(PPh_2H)_2]$ 1 as a white microcrystalline solid (25% yield on the Pt starting material). Prolonged stirring (7 h) of the resulting filtrate under aerobic conditions produces the separation of a new white solid. Recrystallization of this solid from hot acetone yields the crystalline tetralithium diplatinum diphenylphosphinite complex 2 in ca. 45% yield. During our efforts to optimise the synthesis of complex 1 we observed that the relative yields of 1 and 2 vary with the presence of air in the reaction system (25–52% 1 to 45–11% $\hat{2}$, on the Pt starting material). This fact clearly indicates that the presence of PPh_2O ligands in complex 2 stems from the partial oxidation of the PPh₂H ligand to PPh₂OH under the reaction conditions

employed.9 Complex 1 was characterised analytically and spectroscopically.

The identity of complex 2 has been established by X-ray structure analysis† which revealed the unexpected tetra- $[Pt(C \equiv CBu^t)_2(PPh_2O)_2Li_2(\mu$ lithiumdiplatinum species H₂O)(Me₂CO)₂]₂.[‡] Molecule A (Fig. 1) is formed by two identical dianionic fragments 'trans-OPPh₂{Pt(C=CBut)₂}P-Ph2O-' which act as didentate ligands, bridging the four Li centers pairwise through the oxygen atoms. Each PPh₂Oligand is Pt-P bonded [Pt(1)-P(1,2) 2.301(2), 2.306(2) Å] and as mentioned bridges two Li centres [Li–O range 1.907(10)–1.969(10) Å], giving two planar Li_2O_2 rings, Li(1,2)O(1,2') and Li(1',2')O(1',2), which are rigorously coplanar. The central atoms are connected by two H₂O molecules [O(5), O(5')]. All this results in a final linear disposition of four non-bonded Li atoms [Li(2)…Li(1,2') 2.610(13), 2.848(19) Å], Li(1)-Li(2)-Li(2') 176.7(6)°], which is very similar to the Li disposition in the compound recently described by Roesky and coworkers,⁷ Li₄[(MeGa)₆(µ₃-O)₂(Bu^tPO₃)₆]·4thf. This structural feature contrasts with the most prevalent structural motif, cubane-like, found in other tetralithium derivatives¹⁰ which has been rationalised using ring-stacking ideas.11 The Li atoms in

Fig. 1 Molecular structure of 2. Ellipsoids depicted at their 50% probability level. Important molecular geometry parameters include: interatomic distances (Å): Li(1)–O(1) 1.907(10), Li(1)–O(2') 1.927(10), Li(2)–O(2') 1.957(11), Li(2)-O(1) 1.969(10), Li(2)-O(5) 2.0481(10), Li(2)-O(5') 2.048(10), Pt(1)-C(1) 2.001(6), Pt(1)-C(7) 2.006(6), C(1)-C(2) 1.207(8), C(7)-C(8) 1.203(8). Bond angles (°): O(3)-Li(1)-O(4) 99.0(4), O(1)-Li(1)-O(2') 96.9(4), Li(1)-O(1)-Li(2) 84.6(4), Li(1)-O(2')-Li(2) 84.4(4), O(1)-Li(2)-O(2') 93.9(4), O(5)-Li(2)-O(5') 91.9(4), Li(2)-C(7)-C(8) 177.0(5), C(7)-C(8)-C(9) 175.0(7). Primed atoms are related by inversion centre to unprimed ones.

each $[Li(1,2)O_2]$ unit are chemically different. Thus the internal Li atoms [Li(2), Li(2')] have tetrahedral coordination, being bonded to the O atoms [O(5), O(5')] of the two bridging water ligands, while the external Li atoms [Li(1), Li(1')] interact with two terminal acetone molecules [Li(1)-O(3),(4) 1.981(10), 1.997(10) Å]. Both the distortion from tetrahedral geometry at the Li centres and the Li-O bond lengths are in good agreement with those observed in other Li compounds containing similar LiO₄ tetrahedral coordination environments.^{10–12} On the other hand, it is also remarkable that although a variety of metal coordination modes have been observed for diorganophosphinite ligands, 9a, 12b, 13 to our knowledge, complex 2 is the first example in which this ligand acts with a μ_3 - κ^3 : P,O,O' bonding mode, bridging two hard Li atoms (μ -O) and also being P-bonded to a soft Pt centre. The P-O bond distances in 2 [1.537(4), 1.539(4) Å] are comparable to those observed for structurally characterised [PPh2-O]- complexes displaying a µ-O,µ-P metal bridging mode.¹³ The square-planar coordination at Pt is unexceptional, exhibiting, as expected, essentially linear acetylenic fragments (see Fig. 1).

In accord with the solid structure, the IR spectrum of **2** shows, in addition to a medium $v(C\equiv C)$ band at 2092 cm⁻¹, the presence of water (3646, 3402, 1611 cm⁻¹) and typical absorptions for v(P=O) (996, 1006, 1030 cm⁻¹), characteristic of phosphinito-bridged complexes.¹³ In the ³¹P NMR spectrum a singlet shifted far downfield (δ 67.37, ¹J_{PtP} 2510 Hz) is observed, indicative of P oxidation to PV.¹³ The ¹H NMR spectrum of **2** in CD₃COCD₃ exhibits a singlet at δ 0.46 due to equivalent alkynyl groups (C₂Bu¹); however, the difficulty in assigning OH bands, even after addition of D₂O, does not allow us to determine with certainty whether the H₂O molecules remain coordinated in solution.

The Li-ionic conductivity of the Li derivative **2** has also been measured using the well known complex impedance method,¹⁴ but it is near zero. This fact is in agreement with previous results obtained for other tetrahedral LiO_4 derivatives.¹⁵

We thank the Dirección General de Enseñanza Superior (Spain, Projects PB95-0003C02-01 02 and PB95-0792) and the University of LaRioja (API-97/B13) for financial support.

Footnotes and References

* E-mail: juan.fornies@posta.unizar.es

† *Crystal data* for **2**·0.5Me₂CO: C_{43.50}H₅₃Li₂O_{5.50}Pt, *M* = 934.77, triclinic, space group *P*1 (no. 2), *a* = 13.858(3), *b* = 13.858(3), *c* = 24.693(7) Å, *α* = 83.79(3), *β* = 87.53(2), *γ* = 65.02(2)°, *U* = 4590(2) Å³, *Z* = 2, *T* = 173 K, *μ* = 3.166 mm⁻¹, graphite monochromated Mo-Kα radiation, *λ* = 0.71073 Å, colourless prism with dimensions 0.56 × 0.46 × 0.30 mm, Siemens AED2/STOE diffractometer with Oxford Cryogenics low-temperature attachement, *ω*-*θ* scans, data collection range 4 < 2*θ* < 48°, semiempirical absorption correction based on *ψ* scans, transmission factors 0.889–0.577, 1001 refined parameters with 13 628 unique (*R*_{int} = 0.026) reflections (15 247 measured). Full-matrix least-squares refinement of this model against *F*² (program SHELXL 93¹⁶) converged to final residual indices *R*₁ = 0.033, *wR*₂ = 0.070. (*R* factors defined in ref. 16), GOF 1.05. Final difference electron density maps showed four peaks > 1 e Å⁻³ (1.98, 1.43, 1.31, 1.03; largest diff. hole -1.21) lying closer than 1.12 Å from the Pt atoms. CCDC 182/698. \ddagger The crystal structure determination \dagger reveals that there are two independent, but very similar, half-molecules per asymmetric unit. For simplicity, we will discuss here only the molecule denoted by **A**.

- 1 R. Nast, Coord. Chem. Rev., 1982, 47, 89.
- 2 (a) Inorganic Materials, ed. D. W. Bruce and D. O'Hare, Wiley, 2nd edn., 1996, p. 460; (b) W. Beck, B. Niemer and M. Weiser, Angew. Chem., Int. Ed. Engl., 1993, **32**, 923; (c) N. J. Long, Angew. Chem., Int., Ed. Engl., 1995, **34**, 21; (d) R. Faust, F. Diederich, V. Gramlich and P. Seiler, Chem. Eur. J., 1995, **1**, 111; (e) A. Harriman, M. Hissler, R. Ziessel, A. D. Cian and J. Fisher, J. Chem. Soc., Dalton Trans., 1995, 4067 and references therein.
- 3 (a) J. Manna, K. D. John and M. D. Hopkins, Adv. Organomet. Chem., 1995, **38**, 79; (b) M. I. Bruce, M. Ke and P. J. Low, Chem. Commun., 1996, 2405; (c) J. Manna, J. A. Whiteford and P. J. Stang, J. Am. Chem. Soc., 1996, **118**, 8731.
- 4 (a) J. Forniés and E. Lalinde, J. Chem. Soc., Dalton Trans., 1996, 2587; (b) I. Ara, J. R. Berenguer, J. Forniés, E. Lalinde and M. T. Moreno, Organometallics, 1996, 15, 1820; (c) R. J. Cross and M. F. Davidson, J. Chem. Soc., Dalton Trans., 1986, 1987; (d) S. Tanaka, T. Yoshida, T. Adachi, T. Yoshida, K. Onitsuka and K. Sonogashira, Chem. Lett., 1994, 877; (e) S. L. James, G. Verspui, A. L. Spek and G. van Koten, Chem. Commun., 1996, 1309.
- 5 J. R. Berenguer, J. Forniés, F. Martínez, J. C. Cubero, E. Lalinde, M. T. Moreno and A. J. Welch, *Polyhedron*, 1993, **12**, 1797.
- 6 [Pt₂(C=CPh)₄(PEt₃)₂(Buⁿ)₂(μ-Li)₂]: A. Sebald, B. Wrackmeyer, Ch. R. Theocharis and W. Jones, J. Chem. Soc., Dalton Trans., 1984, 747.
- 7 M. G. Walawalkar, R. Murugaval, A. Voigt, H. W. Roesky and H. G. Schmidt, J. Am. Chem. Soc., 1997, 119, 4656.
- 8 P. Espinet, J. Forniés, F. Martínez, M. Tomás, E. Lalinde, M. T. Moreno, A. Ruiz and A. J. Welch, J. Chem. Soc., Dalton Trans., 1990, 791.
- 9 The formation of phosphinito complexes starting from PPh₂H has been previously observed: J. Vicente, M. T. Chicote and P. G. Jones, *Inorg. Chem.*, 1993, **32** 4960.
- M. A. Beswick and D. S. Wright, Comprehensive Organometallic Chemistry II, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson, Elsevier, 1995, vol. 1, pp. 1–34; E. Weiss, Angew. Chem., Int. Ed. Engl., 1993, 32, 1501; K. Gregory, P. v. R. Schleyer and R. Snaith, Adv. Inorg. Chem., 1994, 37, 47; D. Seebach, Angew. Chem., Int. Ed. Engl., 1988, 27, 1624.
- 11 R. E. Mulvey, Chem. Soc. Rev., 1991, 20, 167.
- 12 (a) Lithium Chemistry—A Theoretical and Experimental Overview, ed. A.-M. Sapse and P. v. R. Schleyer, Wiley, New York, 1995, ch. 9 and references therein; (b) M. A. Beswick, N. L. Cromhout, C. N. Harmer, J. S. Palmer, P. R. Raithby, A. Steiner, K. L. Verhorevoort and D. S. Wright, Chem. Commun., 1997, 583.
- 13 Homonuclear examples, see: D. E. Fogg, N. J. Taylor, A. Meyer and A. J. Carty, Organometallics, 1987, 6 2252; N. W. Alcock, P. Bergamini, T. M. Gomes-Carniero, R. D. Jackson, J. Nicholls, A. G. Orpen, P. G. Pringle, S. Sostero and O. Traverso, J. Chem. Soc., Chem. Commun., 1990, 980; V. Riera, M. A. Ruiz, F. Villafane, C. Bois and Y. Jeannin, Organometallics, 1993, 12, 124. Heteronuclear examples, see: P. M. Veitch, J. R. Allen, A. J. Blake and M. Schroder, J. Chem. Soc., Dalton Trans., 1987, 2853; D. M. Roundhill, R. P. Sperline and W. B. Beaulieu, Coord. Chem. Rev., 1978, 26, 263.
- 14 B. V. R. Chowdari, K. Radhakrishnan, K. A. Thomas and G. V. Subba Rao, *Mater. Res. Bull.*, 1989, 24, 221.
- 15 H. Aono, N. Imanaka and G.-Y. Adachi, Acc. Chem. Res., 1994, 27, 265.
- 16 G. M. Sheldrick, SHELXL-93, a Program for Crystal Structure Refinement, University of Göttingen, Germany, 1993.

Received in Basel, Switzerland, 30th July 1997; 7/05522F