Unambiguous synthesis of stromal cell-derived factor-1 by regioselective disulfide bond formation using a DMSO–aqueous HCl system

Hirokazu Tamamura,* Fumihiro Matsumoto, Kyoko Sakano, Akira Otaka, Toshiro Ibuka and Nobutaka Fujii*†

Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan

Total synthesis of human and murine stromal cell-derived factor-1s (SDF-1s) (residues 1–67) containing two disulfide bonds and an oxidation-sensitive Trp residue was achieved unequivocally by stepwise disulfide-forming reactions: A silver trifluoromethanesulfonate (AgOTf)–(DMSO)–aqueous HCl system was used in combination with air oxidation to form regioselectively each disulfide bond.

SDF-1,¹ a lymphocyte chemoattractant, belongs to the CXCchemokines between two subfamilies, the CXC- and CCchemokines.² Recently, it was reported that the CXC-chemokine receptor, CXCR4/fusin, and the CC-chemokine receptor, CCR5, serve as coreceptors in association with CD4 for the entry of T-cell line-tropic (T-tropic) and macrophage-tropic (M-tropic) strains of HIV-1, respectively,3 and that SDF-1 blocks infection of T-cells by T-tropic HIV-1.4 Thus, SDF-1 and its derivatives have the potential to become attractive candidates for the chemotherapy and prophylaxis of HIV-1 infection. The human SDF-1 (residues 1-67), having two intramolecular disulfide bonds and Trp (the sequence shown in Scheme 1), was synthesized by Springer and co-workers, and was identical in activity to the purified natural murine SDF-1.4a For the synthesis of human SDF-1, the researchers employed random disulfide bond formation of the fully reduced SDF-1 ([Cys(SH)9,11,34,50]-SDF-1) by air oxidation. However, it is desirable that each disulfide bond be formed regioselectively in order to suppress the formation of disulfide isomers, particularly since Cys9 and Cys11 are present in close proximity in human SDF-1. The natural SDF-1 contains two disulfide bonds between Cys9 and Cys34 and between Cys11 and Cys50.5 It would be valuable to define the activity of this peptide whose disulfide bridges are correctly formed. Thus, we attempted to synthesize SDF-1(1-67) by regioselective disulfide bond formation. The differential S-protection of four Cys residues and the following stepwise disulfide bond formation must be carried out regioselectively. Several disulfide bond-forming reactions, i.e. iodine,6 thallium(III) trifluoroacetate,7 DMSO8 and sulfoxide-silylating reagents,9 have been found to convert some S-protected Cys into cystine by us and others. The regioselective syntheses using these reactions in combination with a conventional air oxidation method have been reported; however, one potential limitation to the use of these reactions is the oxidative decomposition of Trp.

We have recently developed a new procedure for disulfide bond formation in *S*-Acm-containing[‡] peptides¹⁰ using an AgOTf– DMSO–aq. HCl system.¹¹ In this protocol, *S*-Acm groups are removed from Cys(Acm) residues by AgOTf¹² and subsequent DMSO–aq. HCl treatment effects two reactions: the conversion of Cys(Ag) residues into Cys(SH) residues besides precipitation of AgCl by the action of HCl, and the disulfide bond formation of Cys(SH) residues by the action of DMSO in aqueous media.¹³ Under these reaction conditions, no significant side reactions are observed with oxidation-sensitive amino acids such as Met, Tyr and Trp. Thus, in the present study, we synthesized human and murine SDF-1s(1–67) by the regioselective disulfide bond formation using a combination of the AgOTf–DMSO–aq. HCl system with air oxidation in order to investigate the feasibility of practical applications of this strategy to relatively large and complicated peptides.

SDF-1(1-67) has a single substitution of Ile to Val at a position 18 between mouse and human. The peptidyl resins of human and murine SDF-1s were constructed by Fmoc-based[†] solid-phase synthesis on *p*-alkoxybenzyl alcohol resins¹⁴ (Scheme 1). To form regioselectively two disulfide bridges, two different protecting groups were employed with suitable pairs for the protection of four SH groups of the Cys residues: Trt‡ groups for Cys⁹ and Cys³⁴, and Acm groups for Cys¹¹ and Cys⁵⁰. *S*-Trt groups are removable *via* Me₃SiBr treatment,¹⁵

Scheme 1 Reagents and conditions: i, Fmoc-based solid phase synthesis; ii, Me₃SiBr-thioanisole-TFA; iii, air oxidation; iv, HPLC purification; v, AgOTf-TFA; vi, DMSO-aq. HCl; vii, trypsin; viii, prolyl endopeptidase. Bold letters indicate protected amino acids.

Chem. Commun., 1998 151

Fig. 1 Analytical HPLC of the crude (*a*) human and (*b*) murine SDF-1s. HPLC conditions: a µBondasphere 5 µC18-100 Å (3.9×150 mm) column, a linear gradient of MeCN (25-55%, for 30 min) in 0.1% aq. TFA at a flow rate of 1 cm³ min⁻¹, a Waters LC module 1 equipped with a Waters 741 Data Module, UV absorption measurement at 220 nm.

whereas S-Acm groups are stable during to Me₃SiBr treatment, but can be removed via AgOTf treatment. For the side-chain protection of the other amino acid residues, the following groups were used: Trt groups for Asn and Gln, Boc groups for Lys and His, But groups for Glu, Tyr, Asp, Thr and Ser, and Pmc[‡] groups for Arg. The protected resins were treated with 1 mol dm-3 Me₃SiBr-thioanisole-TFA to cleave peptides from the resins and remove all the protecting groups except for the S-Acm groups.¹⁵ The resulting crude dihydropeptides, [Cys(SH)^{9,34}, Cys(Acm)^{11,50}]-SDF-1s (Scheme 1, **1a,b**), were air-oxidized to establish the first disulfide bond. After HPLC purification, monocyclic products, [Cys(Acm)^{11,50}]-SDF-1s (2a,b), were subjected to sequential treatment with AgOTf-TFA and 50% DMSO-1 mol dm⁻³ aq. HCl (v/v) to establish the second disulfide bond. Each crude bicyclic product exhibited a sharp main peak on analytical HPLC (Fig. 1) without significant side products. HPLC purification gave human and murine SDF-1s (3a,b) in satisfactory yields.§ The effective concentrations (EC_{50}) of the synthetic human and murine SDF-1s for 50% protection in an assay of HIV-induced cytopathogenicity were 463 and 201 μ mol m⁻³, respectively, and for 50% inhibition of HIV-1 p24 antigen production were 630 and 750 μ mol m⁻³, respectively. Furthermore, these peptides have the ability to induce an increase in intracellular Ca2+ through CXCR4/fusin (data not shown). These activities are comparable with those reported by Springer and co-workers.

In conclusion, total synthesis of human and murine SDF-1s (1-67) has been accomplished by stepwise and regioselective disulfide bond formation using air oxidation and the AgOTf–DMSO–aq. HCl system. This combination protocol has proven to be useful for preparation of relatively large and complicated bis(disulfide) peptides, particularly when Trp residues are present.

We are grateful to Professor N. Yamamoto and Dr T. Murakami, Tokyo Medical and Dental University, Tokyo, Japan, and Professor H. Nakashima and Dr R. Arakaki, Kagoshima University Dental School, Kagoshima, Japan, for the anti-HIV assay.

Footnotes and References

† E-mail: nfujii@pharmsun.pharm.kyoto-u.ac.jp

 $\ddagger Abbreviations: Acm = acetamidomethyl, Fmoc = fluoren-9-ylmethoxy-carbonyl, Trt = triphenylmethyl, Pmc = 2,2,5,7,8-pentamethylchroman-6-ylsulfonyl.$

[‡] Human SDF-1(1-67) **3a** was prepared by the following procedure: The protected human SDF-1(1-67) resin (203 mg, 13.5 µmol) was treated with 1 mol dm⁻³ Me₃SiBr-thioanisole–TFA (20 cm³) in the presence of *m*-cresol (1 cm³, 860 equiv.) and ethane-1,2-dithiol (0.4 cm³, 520 equiv.) at 4 °C for 2 h. After removal of the resin by filtration, the filtrate was concentrated *in vacuo*. Ice-cold dry Et₂O (30 cm³) was then added, and the resulting powder was collected by centrifugation. After washing three times with ice- cold dry Et₂O (3 × 20 cm³), the product **1a** was dissolved in 50%

AcOH (2 cm³). Subsequently, the total solution volume was adjusted to 400 cm3 with H2O and the pH was then adjusted to 8 with conc. NH4OH. After 1 day of air oxidation, the pH of the solution was adjusted to 5 with AcOH. The crude product was purified by preparative HPLC [Waters Delta Prep 4000 on a Cosmosil packed column (5 μ C18-100 Å, 20 \times 250 mm) using a linear gradient of MeCN (31-33%, for 30 min) in 0.1% aq. TFA at a flow rate of 7 cm³ min⁻¹]. The solvent was removed by lyophilisation to give [Cys(Acm)^{11,50}]-human SDF-1 2a as a fluffy white powder: (17.4 mg, 1.80 µmol). [Cys(Acm)11, 50]-human SDF-1 (17.2 mg, 1.78 µmol) was treated with AgOTf (45.6 mg, 100 equiv.) in TFA (2 cm³) in the presence of anisole (0.02 cm³) at 4 °C. After 2 h, ice-cold dry Et_2O (30 cm³) was then added. The resulting product was washed three times with ice-cold dry Et2O $(3 \times 20 \text{ cm}^3)$, and then treated with 50% DMSO-1 mol dm⁻³ aq. HCl (v/v, 17 cm³) at room temperature for 7 h. After removal of the AgCl precipitate by filtration, the filtrate was diluted with $H_2O(150 \text{ cm}^3)$. The crude peptide was purified by preparative HPLC [a linear gradient of MeCN (30-32%, for 30 min)] to give human SDF-1 3a as a fluffy white powder [2.1 mg, 0.245 µmol, 13.8% (calculated from 2a)]: [IS-MS (reconstructed): Found, 7827.5. Calc. for C₃₅₀H₅₆₆N₁₀₄O₉₂S₄, 7826.5]. Its disulfide pairings proved to be identical with those of the natural peptide based on ion spray mass analysis of peptide fragments (4 and 5 in Scheme 1) derived from the successive digestion treatment of the synthetic peptide by trypsin (TRCKtreated type XIII from bovine pancreas) and prolyl endopeptidase (from Flavobacterium). $[\alpha]_{D}^{28} - 92.3$ (*c* 0.1, H₂O).

Murine SDF-1(1-67) **3b** was prepared by the same procedure as described above, [16.4% (calculated from (**2b**)]: [IS-MS (reconstructed): Found, 7841.0. Calc. for $C_{351}H_{568}N_{104}O_{92}S_4$, 7840.6]. Its disulfide pairings proved to be identical with those of the natural peptide. [α]_D²⁸-84.8 (*c* 0.1, H₂O).

- T. Nagasawa, H. Kikutani and T. Kishimoto, *Proc. Natl. Acad. Sci.* USA, 1994, **91**, 2305; C. C. Bleul, R. C. Fuhlbrigge, J. M. Casasnovas, A. Aiuti and T. A. Springer, *J. Exp. Med.*, 1996, **184**, 1101.
- 2 H. Iizasa and K. Matsushima, *Clinical Immunology*, 1996, **28**, 733 and references cited therein).
- 3 M. P. D'Souza and V. A. Harden, *Nat. Med. (NY)*, 1996, 2, 1293 and references cited therein.
- 4 (a) C. C. Bleul, M. Farzan, H. Choe, C. Parolin, L. Clark-Lewis, J. Sodroski and T. A. Springer, *Nature*, 1996, **382**, 829; (b) E. Oberlin, A. Amara, F. Bachelerie, C. Bessia, J.-L. Virelizier, F. Arenzana-Seisdedos, O. Schwartz, J.-M. Heard, L. Clark-Lewis, D. F. Legler, M. Loetscher, M. Baggiolini and B. Moser, *Nature*, 1996, **382**, 833.
- 5 The disulfide array of natural SDF-1 was deduced from that of human Interleukin 8 which belongs to the same CXC-chemokine superfamily: G. M. Clore, E. Appella, M. Yamada, K. Matsushima and A. M. Gronenborn, *Biochemistry*, 1990, **29**, 1689.
- 6 B. Kamber, A. Hartmann, K. Eidler, B. Riniker, H. Rink, P. Sieber and W. Rittel, *Helv. Chim. Acta*, 1980, **63**, 899.
- 7 N. Fujii, A. Otaka, S. Funakoshi, K. Bessho and H. Yajima, J. Chem. Soc., Chem. Commun., 1987, 163.
- 8 A. Otaka, T. Koide, A. Shide and N. Fujii, *Tetrahedron Lett.*, 1991, **32**, 1223.
- 9 K. Akaji, T. Tatsumi, M. Yoshida, T. Kimura, Y. Fujiwara and Y. Kiso, J. Am. Chem. Soc., 1992, 114, 4137; T. Koide, A. Otaka, H. Suzuki and N. Fujii, Synlett, 1991, 345.
- 10 D. F. Veber, D. Milkowski, Jr., S. L. Varga, R. G. Denkewalter and R. Hirschmann, J. Am. Chem. Soc., 1972, 94, 5456.
- 11 H. Tamamura, A. Otaka, J. Nakamura, K. Okubo, T. Koide, K. Ikeda and N. Fujii, *Tetrahedron Lett.*, 1993, 34, 4931.
- 12 N. Fujii, A. Otaka, T. Watanabe, A. Okamachi, H. Tamamura, H. Yajima, Y. Inagaki, M. Nomizu and K. Asano, J. Chem. Soc., Chem. Commun., 1989, 283.
- 13 N. Fujii, A. Otaka, A. Okamachi, T. Watanabe, H. Arai, H. Tamamura, S. Funakoshi and H. Yajima, in *Peptides 1988*, ed. G. Jung and E. Bayer, Walter de Gruyter, Berlin, 1989, vol. 1988, p. 58; J. P. Tam, C.-R. Wu, W. Liu and J.-W. Zhang, *J. Am. Chem. Soc.*, 1991, **113**, 6657.
- 14 S. S. Wang, J. Am. Chem. Soc., 1973, 95, 1328.
- 15 N. Fujii, A. Otaka, N. Sugiyama, M. Hatano and H. Yajima, *Chem. Pharm. Bull.*, 1987, 35, 3880.

Received in Cambridge, UK, 18th September 1997; 7/06774G