Biosynthesis of $(-)$ - β -barbatene from ¹³C- and ²H-labelled acetate, mevalonate **and glycerol†**

Kensuke Nabeta,**a* **Kaori Komuro,***a* **Tomoaki Utoh,***a* **Hiroyuki Tazaki***a* **and Hiroyuki Koshino***b*

a Department of Bioresource Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080 Japan b The Institute of Physical and Chemical Research, (Riken) Wako, 351-01 Japan

The 2H and 13C enrichment, 13C–13C coupling patterns and β -2H isotope shifts observed in β -barbatanol prepared from $(-)$ - β -barbatene incorporating variously ²H- and **(**2**)-**b**-barbatene incorporating variously 2H- and 13C-labelled mevalonates, acetates and glycerol verifies a 1,4-hydrogen shift and a double 1,2-methyl migration in the formation of** b**-barbatene in cultured cells of** *Heteroscyphus planus***, and also indicates the diversity of regulation and the sole operation of the mevalonate pathway in extrachloroplastidic sesquiterpene biosynthesis.**

The irregular sesquiterpene, β -barbatene **6**, has been proposed to be related biogenetically to the trichothecanes and cuparanes, the biosynthesis of which apparently involves a usual 1,4-hydride shift.¹ β -Barbatene is formed by further methyl migration by two routes, one involving a double 1,2-methyl migration [route (*a*) in Scheme 1], while the other features 1,3-methyl migration [route (*b*)]. Further cyclization and deprotonation of **5** affords β -barbatene. We fed deuteriated mevalonates (MVA) $([2,2^{-2}H_2]$ and $[4,4^{-2}H_2]$), ¹³C- and ²H-labelled acetates $([2^{-13}C], [1,2^{-13}C_2]$ and $[2,2,2^{-2}H_3, 1^{-13}C]$, $[2^{-13}C]$ glycerol and [6,6-2H2]glucose to cultured cells of *Heteroscyphus planus* to elucidate the details of these steps and to determine whether extrachloroplastidic terpenoids are produced *via* a non-mevalonate-utilizing pathway.2

Cell cultures of *H. planus* were grown in MSK-4 medium3 (75 ml), and fed 1.0 mmol of the potassium deuteriated MVAs (isotopic purity 99 atom%), 0.5 mmol of labelled acetate (isotopic purity 99 atom%), 0.5 mmol of [2-13C]glycerol (60 atom%) and 11.1 mmol of $[6,6-2H_2]$ glucose (20 atom%) under continuous light at 25 °C. After extraction with methanol, the labelled β -barbatene was partitioned with pentane and separated by silica gel chromatography. The partially purified β -barbatene was then converted to β -barbatanol 7, by reaction with borane– methyl sulfide, to avoid loss of volatile β -barbatene during further purification. β -Barbatanol was finally purified by repeated HPLC. Full assignment of the natural abundance 1H and ¹³C{¹H} NMR spectra of β -barbatanol and its acetate **8** was achieved by 1H–1H 2D COSY, 1H–13C 2D COSY, DEPT, differential NOE, DQF-COSY, PFG- HMQC and PFG-HMBC NMR studies.

²H{¹H} NMR spectra of β -barbatanyl [4,4-²H₂]mevalonate indicated that 2H-6 and 2H-10 retained in farnesyl diphosphate **1** were incorporated into the C-5 position of β -barbatanol $[\delta_{D} 1.05$ and 2.05 (CDCl₃), see Scheme 1] *via* the 1,4-hydride shift from cation **2** to **3** and 2H-2 was incorporated into the C-7 ($\delta_{\rm D}$ 1.61) position, while deuterium atoms of [2,2-²H₂]MVA were incorporated into C-3 , C-9 and C-14 positions of β -barbatanol. ²H enrichment of β -barbatanol (10.3 atom%) excess) incorporating deuteriated MVA was determined by GC–MS analysis.4 These labelling patterns indicated the 1,4-hydride shift and migration of the methyl group originating from the C-3 methyl of MVA. 13C{1H} NMR examination of the β -2H isotope shifts⁵ in β -barbatanyl [1-13C, 2,2,2-2H₃]acetate indicated the retention of two 2H atoms at C-5 (ratio of C^2H_2 : C^2H^1H : C^1H_2 of $C-4 = ca. 1$: 2: 5, $\Delta\delta - 0.22$ and -0.11 ppm, Table 1) which supports the 1,4-hydride shift. No apparent ¹³C signals due to a β -isotope shift of the C-2 carbon by ¹³C²H₃ were observed.

The ¹³C {¹H} NMR spectrum of β -barbatanyl [1,2-¹³C₂]acetate showed three 13C enriched peaks with doublets due to 13C–13C coupling (C-1–C-12, C-2–C-13 and C-8–C-15, see footnote of Table 1). The relative peak intensity of doublet to the central ¹³C peak of C-13 (0.17) was much lower than that of C-15 (0.77) or that estimated on the basis of average 13 C enrichment (0.76 atom% excess), indicating that $[1,2^{-13}\overline{C}_2]$ acetate was not incorporated into the C-2 and C-13 positions. Intense ${}^{13}C_{-}{}^{13}C$ couplings between C-1–C-10, C-4–C-5,

Scheme 1 Biosynthetic pathway of $(-)$ - β -barbatene from deuteriated mevalonate in cultured cells of *H. planus*. Relative peak intensity of 2H peaks at δ_{D} 1.73, 1.52 and 0.96 = 1:2:3 and that at δ_{D} 2.05, 1.61 and $1.05 = 1:1:1$. H-6 in the carbocation 3 corresponds to H-6 in farnesyl diphosphate **1**.

Table 1¹³C enrichment of carbons in β -barbatanol acetates incorporating ¹³C- and ²H-labelled acetates. Figures in parentheses show ¹³C enrichment (atom% excess). Figures in square brackets show 13 C chemical shift of β -barbatanol

	$\delta_{\rm C}$					$[1 - {}^{13}C, {}^{2}H_{3}]$ Acetate incorporation	
Carbon	Non-labelled β-barbatanol	$[2 - 13C]$	$[1,2^{-13}C_2]$	$13C-13C$ Coupling observed ^a	$[1 - 13C, 2H_3]$	$^{2}H: {}^{1}H^{b}$	$\Delta \delta^c$ (ppm)
	43.3 [43.4]	43.3 $(0.8)^d$	$43.3(-0.1)$	$C-10$, $C-12$ and $C-11$			
2	54.7 [54.7]		54.7(0.4)	Unresolved	54.7(2.7)		
3	34.2 [34.1]	34.2(1.8)	34.1(0.6)	$C-2$ and $C-4$			
	27.9 [27.9]		27.9(1.3)	$C-5$ and $C-3$	27.9(0.8)	$19:40:100^e$	$-0.22, -0.11$
5	36.7 [36.7]	36.7(1.8)	36.7(0.5)	$C-4$ and $C-6$			
6	54.8 [54.9]		54.8(0.2)	Unresolved	54.8 (0.7)		
	46.5 [46.3]	46.5(0.8)	46.5(0.7)	$C-11$, $C-6$ and $C-8$			
8	42.8 [46.8]		42.5(0.7)	$C-15$, $C-7$ and $C-9$	42.5(0.8)	30:32:100e	$-0.18, -0.09$
9	23.5 [23.4]	23.5(1.0)	23.5(1.2)	$C-8$ and $C-10$			
10	37.7 [37.9]		37.7(1.3)	$C-1$ and $C-9$	37.7(1.6)		
11	48.6 [48.7]		48.5(0.6)	$C-7$ and $C-1$	48.5(0.3)	31:100	-0.13
12	24.6 [24.7]	24.6 $(0.4)^d$	24.6(0.8)	$C-1$			
13	23.0 [23.0]	23.0(1.1)	23.0(1.2)	$C-2$			
14	29.0 [29.0]	29.0(1.8)	29.0(1.3)	$C-6$			
15	68.6 [67.2]	68.6 (1.8)	68.6(0.8)	$C-8$			
Acetyl Me	21.1						
Acetyl $C=O$	171.3						
Average		1.24	0.76	1.14			

^a Coupling constant in b-barbatanol incorporating [1,2-13C]acetate, *J*C,C/Hz, C-2–C-3 33.0, C-3–C-4 33.0, C-4–C-5 32.3, C-5–C-6 34.0, C-7–C-8 36.0, C-8–C-9 30.5, C-9–C-10 33.2, C-10–C-1 34.1, C-11–C-1 31.7, C-11–C-7 31.7, C-12–C-1 37.9, C-13–C-2 31.8, C-14–C-6 29.3, C-15–C-8 37.9. *J*C-1, C-2, $J_{C-2, C-6}$ and $J_{C-6, C-7}$ were not determined, because of the low intensity of quaternary carbon atoms. *b* Ratio of carbon peak intensities for β -isotope shifted signals. *c* β -Isotope shifts due to ²H. *d* Coupling constant in β -barbatanol incorporating [2-¹³C]acetate, *J*_{CC}/Hz, C-1–C-12 31.4. *e* CD₂ : CDH : CH₂.

C-7–C-11 and C-8–C-15 were confirmed by a PFG-IN-ADEQUATE experiment.6

Despite the low level of incorporation, the results of feeding cultured cells with $[1,2^{-13}C_2]$ acetate demonstrated that all the carbon atoms in β -barbatanol were coupled with every adjacent carbon atoms. Couplings were observed between carbon atoms of different acetate units or those of different isoprene units, C-2–C-13, C-3–C-4 and C-9–C-10 (see footnote of Table 1). This suggests that β -barbatene biosynthesis is compartmentalized and occurs rapidly, *e.g.* within organelles.7 However, in the formation of labelled (1*S*)-7-methoxy-1,2-dihydrocadalene3 (cadinane **9**, 0.80 atom% excess) incorporating $[1,2^{-13}C_2]$ acetate, which was isolated together with labelled β -barbatanol from the pentane extract of cultured cells fed with $[1,2^{-13}C_2]$ acetate, no coupling was observed between the carbons of the different isoprene units. Contrasting results for β -barbatene and the cadinane suggest that their biosynthesis is regulated differently. These findings suggest a diversity of regulation in sesquiterpene biosynthesis. Although cultured cells of *H. planus* accumulate both cadinanes and bisabolanes,³ only cadinane synthases have been detected in the 40 000 g supernatants.⁸ This observation supported the suggestion that the cyclases which form bisabolanes including β -barbatene are associated with organelles, while cadinane synthases are localized in cytosol.

Labels were detected as intense singlets at C-2, C-4, C-6, C-8, C-10 and C-11 of β -barbatanol incorporating [2-¹³C]glycerol, all of which were observed as intense singlet peaks. No deuterium atoms from [6,6-2H2]glucose were incorporated into b-barbatanol.

The labelling pattern supported the sole operation of the mevalonate pathway in biosynthesis of the extrachloroplastidic sesquiterpenes. In contrast the simultaneous operation of two distinct pathways, a mevalonate- and a non-mevalonatemediated pathway, has been identified in the formation of the phytyl side-chain within chloroplasts.9

These obsevations are consistent with the occurrence of a 1,4-hydride shift and double 1,2-methyl migration during

formation of β -barbatene and exclude the possibility of 1,3-methyl migration. They also suggested that the diversity of regulation and the sole operation of the mevalonate-utilizing pathway in the extrachloroplastidic biosynthesis of sesquiterpenes.

We are grateful to Professor H. Seto (Tokyo University) and Professor K. Kakinuma (Tokyo Institute of Technology) for the generous gift of $[6,6-2H_2]$ glucose. These investigations were supported by Grants-in-aid for Scientific Research (A. No. 08306021) and (C. No. 08660125), from the Ministry of Education, Science and Culture, Japan.

Footnotes and References

* E-mail: knabeta@obihiro.ac.jp

† This ChemComm is also available in expanded format *via* the World Wide Web: http://www.rsc.org/ccenhanced

- 1 D. E. Cane, in *Biosynthesis of Isoprenoid Compounds,* ed. J. W. Porter and S. L. Spurgeon, Wiley, New York 1981, vol. 1, p. 283.
- 2 H. Rohmer, M. Knani, P. Simonin, R. Sutter and H. Sahm, *Biochem. J*., 1993, **295**, 517.
- 3 K. Nabeta, K. Katayama, S. Nakagawara and K. Katoh, *Phytochemistry*, 1993, **32**, 117.
- 4 K. Nabeta, *Dev. Food. Sci.,* 1995, **37**, 951.
- 5 J. C. Vederas, *Nat. Prod. Rep*., 1987, **4**, 277 and references cited therein.
- 6 H. Koshino and J. Uzawa, *Bull. Magn. Reson.*, 1995, **17**, 260.
- 7 C. A. West, A. F. Louis, K. A. Wickham and Y.-Y. Ren, *Recent Adv. Phytochem*., 1990, **24**, 219.
- 8 K. Nabeta, K. Kigure, M. Fujita, T. Nagoya, T. Takasawa, H. Okuyama and T. Takasawa, *J. Chem. Soc., Perkin Trans. 1*, 1995, 1935; K. Nabeta, M. Fujita, K. Komuro, K. Katayama and T. Takasawa, *J. Chem. Soc., Perkin Trans 1*, 1997, 2065.
- 9 S. Saitoh, K. Adachi, K. Komuro and K. Nabeta, Proceedings of the 41st Symposium on the Chemistry of Terpenes, Essential Oils and Aromatics, Morioka, 1997, p. 426.

Received in Cambridge, UK, 8th August 1997; revised M/S received, 17th October 1997; 7/07506E