Biosynthesis of (-)- β -barbatene from ¹³C- and ²H-labelled acetate, mevalonate and glycerol[†]

Kensuke Nabeta,*a Kaori Komuro,a Tomoaki Utoh,a Hiroyuki Tazakia and Hiroyuki Koshinob

^a Department of Bioresource Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080 Japan ^b The Institute of Physical and Chemical Research, (Riken) Wako, 351-01 Japan

The ²H and ¹³C enrichment, ¹³C–¹³C coupling patterns and β -²H isotope shifts observed in β -barbatanol prepared from (–)- β -barbatene incorporating variously ²H- and ¹³C-labelled mevalonates, acetates and glycerol verifies a 1,4-hydrogen shift and a double 1,2-methyl migration in the formation of β -barbatene in cultured cells of *Heteroscyphus planus*, and also indicates the diversity of regulation and the sole operation of the mevalonate pathway in extrachloroplastidic sesquiterpene biosynthesis.

The irregular sesquiterpene, β -barbatene **6**, has been proposed to be related biogenetically to the trichothecanes and cuparanes, the biosynthesis of which apparently involves a usual 1,4-hydride shift.¹ β -Barbatene is formed by further methyl migration by two routes, one involving a double 1,2-methyl migration [route (*a*) in Scheme 1], while the other features 1,3-methyl migration [route (*b*)]. Further cyclization and deprotonation of **5** affords β -barbatene. We fed deuteriated mevalonates (MVA) ([2,2-²H₂] and [4,4-²H₂]), ¹³C- and ²H-labelled acetates ([2-¹³C], [1,2-¹³C₂] and [2,2,2-²H₃, 1-¹³C]), [2-¹³C]glycerol and [6,6-²H₂]glucose to cultured cells of *Heteroscyphus planus* to elucidate the details of these steps and to determine whether extrachloroplastidic terpenoids are produced *via* a non-mevalonate-utilizing pathway.²

Cell cultures of *H. planus* were grown in MSK-4 medium³ (75 ml), and fed 1.0 mmol of the potassium deuteriated MVAs (isotopic purity 99 atom%), 0.5 mmol of labelled acetate (isotopic purity 99 atom%), 0.5 mmol of $[2^{-13}C]glycerol$ (60 atom%) and 11.1 mmol of $[6,6^{-2}H_2]glucose$ (20 atom%) under continuous light at 25 °C. After extraction with methanol, the labelled β -barbatene was partitioned with pentane and separated by silica gel chromatography. The partially purified β -barbatene was then converted to β -barbatanol 7, by reaction with borane-methyl sulfide, to avoid loss of volatile β -barbatene during further purification. β -Barbatanol was finally purified by repeated HPLC. Full assignment of the natural abundance ¹H and ¹³C{¹H} NMR spectra of β -barbatanol and its acetate **8** was achieved by ¹H–¹H 2D COSY, ¹H–¹³C 2D COSY, DEPT, differential NOE, DQF-COSY, PFG- HMQC and PFG-HMBC NMR studies.

²H{¹H} NMR spectra of β-barbatanyl [4,4-²H₂]mevalonate indicated that ²H-6 and ²H-10 retained in farnesyl diphosphate **1** were incorporated into the C-5 position of β-barbatanol [δ_D 1.05 and 2.05 (CDCl₃), see Scheme 1] *via* the 1,4-hydride shift from cation **2** to **3** and ²H-2 was incorporated into the C-7 (δ_D 1.61) position, while deuterium atoms of [2,2-²H₂]MVA were incorporated into C-3 , C-9 and C-14 positions of β-barbatanol. ²H enrichment of β-barbatanol (10.3 atom% excess) incorporating deuteriated MVA was determined by GC–MS analysis.⁴ These labelling patterns indicated the 1,4-hydride shift and migration of the methyl group originating from the C-3 methyl of MVA. ¹³C{¹H} NMR examination of the β-²H isotope shifts⁵ in β-barbatanyl [1-¹³C, 2,2,2-²H₃]acetate indicated the retention of two ²H atoms at C-5 (ratio of C²H₂: C²H¹H: C¹H₂ of C-4 = *ca*. 1:2:5, $\Delta\delta$ –0.22 and –0.11 ppm, Table 1) which supports the 1,4-hydride shift. No apparent ^{13}C signals due to a β -isotope shift of the C-2 carbon by $^{13}C^2H_3$ were observed.

The ¹³C {¹H} NMR spectrum of β -barbatanyl [1,2-¹³C₂]acetate showed three ¹³C enriched peaks with doublets due to ¹³C-¹³C coupling (C-1-C-12, C-2-C-13 and C-8-C-15, see footnote of Table 1). The relative peak intensity of doublet to the central ¹³C peak of C-13 (0.17) was much lower than that of C-15 (0.77) or that estimated on the basis of average ¹³C enrichment (0.76 atom% excess), indicating that [1,2-¹³C₂]acetate was not incorporated into the C-2 and C-13 positions. Intense ¹³C-¹³C couplings between C-1-C-10, C-4-C-5,

Scheme 1 Biosynthetic pathway of (-)- β -barbatene from deuteriated mevalonate in cultured cells of *H. planus*. Relative peak intensity of ²H peaks at δ_D 1.73, 1.52 and 0.96 = 1:2:3 and that at δ_D 2.05, 1.61 and 1.05 = 1:1:1. H-6 in the carbocation **3** corresponds to H-6 in farnesyl diphosphate **1**.

Chem. Commun., 1998 169

Table 1 ¹³C enrichment of carbons in β -barbatanol acetates incorporating ¹³C- and ²H-labelled acetates. Figures in parentheses show ¹³C enrichment (atom% excess). Figures in square brackets show ¹³C chemical shift of β -barbatanol

Carbon	δ _C					[1- ¹³ C, ² H ₃]Acetate incorporation	
	Non-labelled β-barbatanol	[2- ¹³ C]	[1,2- ¹³ C ₂]	¹³ C– ¹³ C Coupling observed ^{<i>a</i>}	[1- ¹³ C, ² H ₃]	² H: ¹ H ^b	$\Delta \delta^c$ (ppm)
1	43.3 [43.4]	43.3 (0.8) ^d	43.3 (-0.1)	C-10, C-12 and C-11			
2	54.7 [54.7]	. ,	54.7 (0.4)	Unresolved	54.7 (2.7)		
3	34.2 [34.1]	34.2 (1.8)	34.1 (0.6)	C-2 and C-4			
4	27.9 [27.9]		27.9 (1.3)	C-5 and C-3	27.9 (0.8)	19:40:100 ^e	-0.22, -0.11
5	36.7 [36.7]	36.7 (1.8)	36.7 (0.5)	C-4 and C-6			
6	54.8 [54.9]		54.8 (0.2)	Unresolved	54.8 (0.7)		
7	46.5 [46.3]	46.5 (0.8)	46.5 (0.7)	C-11, C-6 and C-8			
8	42.8 [46.8]		42.5 (0.7)	C-15, C-7 and C-9	42.5 (0.8)	30:32:100 ^e	-0.18, -0.09
9	23.5 [23.4]	23.5 (1.0)	23.5 (1.2)	C-8 and C-10			
10	37.7 [37.9]		37.7 (1.3)	C-1 and C-9	37.7 (1.6)		
11	48.6 [48.7]		48.5 (0.6)	C-7 and C-1	48.5 (0.3)	31:100	-0.13
12	24.6 [24.7]	$24.6 (0.4)^d$	24.6 (0.8)	C-1			
13	23.0 [23.0]	23.0 (1.1)	23.0 (1.2)	C-2			
14	29.0 [29.0]	29.0 (1.8)	29.0 (1.3)	C-6			
15	68.6 [67.2]	68.6 (1.8)	68.6 (0.8)	C-8			
Acetyl Me	21.1						
Acetyl C=O	171.3						
Average		1.24	0.76	1.14			

^{*a*} Coupling constant in β-barbatanol incorporating [1,2-¹³C]acetate, $J_{C,C}$ /Hz, C-2–C-3 33.0, C-3–C-4 33.0, C-4–C-5 32.3, C-5–C-6 34.0, C-7–C-8 36.0, C-8–C-9 30.5, C-9–C-10 33.2, C-10–C-1 34.1, C-11–C-1 31.7, C-11–C-7 31.7, C-12–C-1 37.9, C-13–C-2 31.8, C-14–C-6 29.3, C-15–C-8 37.9, $J_{C-1,C-2}$, $J_{C-2,C-6}$ and $J_{C-6,C-7}$ were not determined, because of the low intensity of quaternary carbon atoms. ^{*b*} Ratio of carbon peak intensities for β-isotope shifted signals. ^{*c*} β-Isotope shifts due to ²H. ^{*d*} Coupling constant in β-barbatanol incorporating [2-¹³C]acetate, $J_{C,C}$ /Hz, C-1–C-12 31.4. ^{*e*} CD₂: CDH : CH₂.

C-7–C-11 and C-8–C-15 were confirmed by a PFG-IN-ADEQUATE experiment. 6

Despite the low level of incorporation, the results of feeding cultured cells with [1,2-13C2] acetate demonstrated that all the carbon atoms in β-barbatanol were coupled with every adjacent carbon atoms. Couplings were observed between carbon atoms of different acetate units or those of different isoprene units, C-2-C-13, C-3-C-4 and C-9-C-10 (see footnote of Table 1). This suggests that β -barbatene biosynthesis is compartmentalized and occurs rapidly, e.g. within organelles.7 However, in the formation of labelled (1S)-7-methoxy-1,2-dihydrocadalene³ (cadinane 9, 0.80 atom% excess) incorporating [1,2-13C₂]acetate, which was isolated together with labelled β -barbatanol from the pentane extract of cultured cells fed with $[1,2^{-13}C_2]a$ cetate, no coupling was observed between the carbons of the different isoprene units. Contrasting results for β -barbatene and the cadinane suggest that their biosynthesis is regulated differently. These findings suggest a diversity of regulation in sesquiterpene biosynthesis. Although cultured cells of H. planus accumulate both cadinanes and bisabolanes,3 only cadinane synthases have been detected in the 40 000 g supernatants.8 This observation supported the suggestion that the cyclases which form bisabolanes including β -barbatene are associated with organelles, while cadinane synthases are localized in cytosol.

Labels were detected as intense singlets at C-2, C-4, C-6, C-8, C-10 and C-11 of β -barbatanol incorporating [2-¹³C]glycerol, all of which were observed as intense singlet peaks. No deuterium atoms from [6,6-²H₂]glucose were incorporated into β -barbatanol.

The labelling pattern supported the sole operation of the mevalonate pathway in biosynthesis of the extrachloroplastidic sesquiterpenes. In contrast the simultaneous operation of two distinct pathways, a mevalonate- and a non-mevalonate-mediated pathway, has been identified in the formation of the phytyl side-chain within chloroplasts.⁹

These obsevations are consistent with the occurrence of a 1,4-hydride shift and double 1,2-methyl migration during

formation of β -barbatene and exclude the possibility of 1,3-methyl migration. They also suggested that the diversity of regulation and the sole operation of the mevalonate-utilizing pathway in the extrachloroplastidic biosynthesis of sesquiterpenes.

We are grateful to Professor H. Seto (Tokyo University) and Professor K. Kakinuma (Tokyo Institute of Technology) for the generous gift of $[6,6-^{2}H_{2}]$ glucose. These investigations were supported by Grants-in-aid for Scientific Research (A. No. 08306021) and (C. No. 08660125), from the Ministry of Education, Science and Culture, Japan.

Footnotes and References

* E-mail: knabeta@obihiro.ac.jp

† This ChemComm is also available in expanded format via the World Wide Web: http://www.rsc.org/ccenhanced

- 1 D. E. Cane, in *Biosynthesis of Isoprenoid Compounds*, ed. J. W. Porter and S. L. Spurgeon, Wiley, New York 1981, vol. 1, p. 283.
- 2 H. Rohmer, M. Knani, P. Simonin, R. Sutter and H. Sahm, *Biochem. J.*, 1993, **295**, 517.
- 3 K. Nabeta, K. Katayama, S. Nakagawara and K. Katoh, *Phytochemistry*, 1993, **32**, 117.
- 4 K. Nabeta, Dev. Food. Sci., 1995, 37, 951.
- 5 J. C. Vederas, Nat. Prod. Rep., 1987, 4, 277 and references cited therein.
- 6 H. Koshino and J. Uzawa, Bull. Magn. Reson., 1995, 17, 260.
- 7 C. A. West, A. F. Louis, K. A. Wickham and Y.-Y. Ren, *Recent Adv. Phytochem.*, 1990, 24, 219.
- 8 K. Nabeta, K. Kigure, M. Fujita, T. Nagoya, T. Takasawa, H. Okuyama and T. Takasawa, J. Chem. Soc., Perkin Trans. 1, 1995, 1935; K. Nabeta, M. Fujita, K. Komuro, K. Katayama and T. Takasawa, J. Chem. Soc., Perkin Trans 1, 1997, 2065.
- 9 S. Saitoh, K. Adachi, K. Komuro and K. Nabeta, Proceedings of the 41st Symposium on the Chemistry of Terpenes, Essential Oils and Aromatics, Morioka, 1997, p. 426.

Received in Cambridge, UK, 8th August 1997; revised M/S received, 17th October 1997; 7/07506E