Lithium enamides, β -diketiminates and 1,3-diazaallyls from the 1:1 insertion of an isonitrile into the Li–C bond of LiCH(SiMe₃)₂†‡

Peter B. Hitchcock, Michael F. Lappert* and Marcus Layh

The Chemistry Laboratory, University of Sussex, Brighton, UK BN1 9QJ

The diverse behaviour of LiCHR₂ A towards an isonitrile R'NC is unravelled; depending on reaction conditions and choice of R', the product was an enamide Li[N-(R')C(R)=C(H)R](tmen), a β -diketiminate Li[N-(R')C(R)C(H)C(R)N(R')], a 1,3-diazaallyl (with additionally PhCN) Li[N(Ph)C(R)NC(Ph)=C(H)R](tmen) or a 1:1 adduct of A and Li[N(R')C(R)C(H)C(R)N(R')](CNR') (R' = Bu^t), (R = SiMe_3, tmen = Me_2NCH_2CH_2NMe_2 and R' = Bu^t, Ph or C₆H₃Me_2-2,6).

We have previously noted that the reaction between bis-(trimethylsilyl)methyllithium LiCHR₂ **A** and the α -H-free nitrile PhCN or Bu^tCN gave under ambient conditions and irrespective of stoichiometry the 1 : 2 or 1 : 1 adduct, the lithium β -diketiminate [LiN(R)C(Ph)C(H)C(Ph)N(R)]₂ **B**¹ or 1-azaallyl [LiN(R)C(Bu^t)C(H)R]₂² (R = SiMe₃). We now report new findings on the LiCHR₂–PhCN system and on the variety of reactions between LiCHR₂ and the isonitrile R'NC (R' = Ph, Bu^t or C₆H₃Me₂-2,6).

Treatment of a lithium alkyl LiR¹ and an isonitrile R²NC was shown by Walborsky *et al.* to give the lithioaldimine LiC(R¹)=NR², which was not isolated, but used *in situ* as a source of an aldehyde, ketone, α -keto acid, β -hydroxyketone or a heterocycle.³

We now report (*i*) the synthesis of three diverse adducts **1**, **2** and **3** formed from LiCHR₂ **A** and R'NC (R' = Bu^t or C₆H₃Me₂-2,6); (*ii*) that the previously examined LiCHR₂-PhCN system¹ is modified in the presence of (Me₂NCH₂)₂ (= tmen) to yield the 1 : 1 adduct **4**; (*iii*) that the enamide **1** with PhCN or **4** with PhNC yields the lithium β -diketiminate **5** or 1,3-diazaallyl **6**, respectively; (*iv*) that the β -diketiminate **B**¹ with LiCHR₂ and 1 equiv. of Et₂O or thf (OC₄H₈) gives the dilithium [bis(trimethylsilyl)methyl- β -diketiminate] donor (Et₂O or thf) adduct **7a** or **7b** (similar in type to the *tert*-butyl isonitrile adduct **3**); and (*v*) the characterisation of each of **1**–7,§ including the X-ray structures of **6** (to be published in the full paper) and **7b**.¶ The reactions leading to compounds **1**–**7** are summarised in Scheme 1.

It is noteworthy (Scheme 1) that the nature of the product, a lithium enamide 1 or β -diketiminate 2, or (irrespective of stoichiometry) an isonitrile adduct of a dilithium [bis-(trimethylsilyl)methyl- β -diketiminate] 3, obtained from LiCHR₂ A and the isonitrile R'NC, in good yield under ambient conditions in Et₂O, was dependent on one or more of the variables: the nature of R', the stoichiometry and the presence or absence of tmen. A transient lithium β -diketiminate may well have been an intermediate along the pathway to 3, as evident from the isolation of the related dilithium compounds 7a and 7b from A and B.

The formation of the stable compound **4** (from LiCHR₂– PhCN–tmen) lends credence to the suggestion that the previously reported LiCHR₂–PhCN reaction (which gave the lithium β -diketiminate **B**)¹ proceeded *via* a transient η^3 -1-azaallyl (an isomer of the tmen-free **4**). The function of the tmen may have been to have promoted the $\eta^3 \rightarrow \eta^1$ isomerisation. This is also consistent with the present observation that **4**

Scheme 1 Synthesis of the crystalline compounds 1–7 from LiCH(SiMe₃)₂. Reactions carried out in C_5H_{12} or Et₂O (2–4) at -78 °C to *ca*. 25 °C; yields refer to recrystallised complexes; $R' = C_6H_3Me_2$ -2,6.

+ PhNC gave the Li(tmen) 1,3-diazaallyl compound **6** rather than the isomer 0.5 **B** (tmen) (*cf.*, the reaction of the Li enamide **1** + 2,6-Me₂C₆H₃NC \rightarrow Li β -diketiminate **2**). The possibility (*cf.*, ref. 5) that in this reaction PhNC was initially isomerised into PhCN is discounted because **4** + PhCN gave an isomer of **6**, in which the Ph and Me₃Si groups at N(1) and C(2) were exchanged.

The multifarious reaction products observed in the LiCHR₂– R'NC system (Scheme 1) may be accommodated by the pathways shown in Scheme 2. Thus, we propose that (i) an initial 1:1 complex 8 is (ii) transformed into the lithioaldimine 9, which (iii) induces a C(1) \rightarrow C(2) shift of an Me₃Si (= R) group yielding the lithium 1-azaallyl 10 \rightleftharpoons 11, this (iv)

Fig. 1 Molecular structure of 7b with selected bond distances (Å): N(1)-Li(1) 2.00(2), N(1)-Li(2) 2.13(2), C(0)-Li(2) 2.07(3), N(1)-C(1) 1.32(1), C(1)-C(2) 1.41(1), O-Li(1) 1.86(3).

behaving as a C-centred nucleophile adds to R'NC giving the lithiodiimine **12**, which (v), by a process similar to (*iii*), yields the lithium β -diketiminate **13**.

Although isonitrile complexes of certain transition metals are established, isonitrile adducts of a main group metal are rare {see, *e.g.*, ^{6a} Ph₂CNCLi[(–)-sparteine](thf)₂ and ^{6b} AlPh₃(CNC₆H₁₁-*c*)}, complex **3** may serve as a model for **8**. The propensity for an Me₃Si group to undergo a 1,2- or 1,3-shift in an anionic complex is well documented⁴ [*e.g.*, ^{1,2} 1,3-C \rightarrow N in the LiCHR₂–R'CN systems], and this provides support for propositions (iii) and (v) of Scheme 2. The isolated complexes **1**, **2** and **3** correspond to a tmen adduct of **11**, **13** and a composite of **8** and **13**, respectively.

The nature of the donor adducts 3, 7a and 7b, of a dilithium [bis(trimethylsilyl)methyl- β -diketiminate] requires comment. In principle, each may be regarded as being either a 1:1 cocrystal of $LiCHR_2(donor)$ and $Li(\beta-diketiminate)$ or a discrete compound. We favour the latter for the following reasons. First, repeated recrystallisation of 3 from different solvents led in each case to a product of precise 1:1 composition. Second, their colours (Scheme 1) are distinct from those of their possible factors (B is pale yellow). Third, the X-ray structure of 7b (Fig. 1) shows each lithium atom to be closely bound to the two nitrogen atoms of the β -diketiminate moiety [as, indeed, appears to be the case for 3, but the quality of the crystals was such that an accurate structure was not established, $R_1 \{I > 2\sigma(I) \approx 0.20\}$]. Finally, the ⁷Li{¹H} NMR spectrum of **7a** in C₆D₅CD₃ showed a single signal at δ 2.30 at 293 K, but three separate signals at δ 2.36, 1.44 and 1.37 at 193 K; this is attributed to there being an equilibrium between 7a and its factors A and B. Variable temperature NMR spectra of 3 and 7b are under investigation.

Crystalline **7b** has a mirror plane containing the atoms O and C(13) of the thf molecule, the two lithium, the two silicon atoms and the methyl group C(6), as well as C(2) [corresponding to the C(H) of the β -diketiminate moiety]. The methine carbon, C(0) of the CHR₂ group, and the remaining atoms C(10), C(11) and C(12) of the thf molecule are disordered across the mirror plane. The nitrogen atoms N(1) and N(1') are bridged by Li(1) (bonded to thf) and Li(2), one above and the other below the nearly

planar and completely delocalised diketiminato skeleton, with Li(1)–N(1) 2.00(2) and Li(2)–N(1) 2.13(2) Å. This contrasts with the situation in the dimeric lithium β -diketiminate **B**, which has only one of the two nitrogen atoms of each boat-shaped, incompletely delocalised lithiated ligand in a bridging mode with Li–N 1.952(9) and 2.095(9) Å, for the four- and three-coordinate nitrogens, respectively.¹ The Li(2)–C(0) distance of 2.07(3) Å may be compared with 2.14(3)–2.27(2) Å in crystalline [LiCHR₂]_∞.⁷

The lithium compounds 1-7 are available as ligand transfer agents to provide a variety of new s-, p-, d- and f-block metal coordination compounds. We also conclude that isonitriles have an as yet unexplored potential for main group metal chemistry.

We thank ESPRC for a fellowship for M. L. and for other support.

Footnotes and References

* E-mail: m.f.lappert@sussex.ac.uk † No reprints available.

[‡] Dedicated to Professor Dr Manfred Weidenbruch, as a mark of friendship and respect, on the occasion of his 60th birthday.

§ Selected spectroscopic data [¹H at 300.1, ⁷Li [¹H] at 116.6 and ¹³C[¹H] at 75.5 MHz in C₇D₈ **1**, **2–7** in C₆D₆]. **1**: ¹H (values for major rotamer only) $\delta 0.03$ (CHSiMe₃), $\delta 0.20$ (SiMe₃, s), 3.80 (CH, s); 7Li [¹H] $\delta 0.51$; ¹³C[¹H] $\delta 84.7$ (CH, s), 172.2 (CN, s). **2**: ¹H $\delta 0.05$ (SiMe₃, s), 5.48 (CH, 1); 7Li [¹H] $\delta - 0.83$; ¹³C[¹H] $\delta 104.6$ (CH, s), 172.3 (CN, s). **3**: ¹H $\delta - 1.69$ (CHSi₂, s), 5.40 (CH, s); 7Li [¹H] $\delta 0.31$ (s); ¹³C[¹H] $\delta 0.33$ (s); ¹³C[¹H] $\delta 3.3$ (CHSi₂, s), 108.5 (CH, s), 779.9 (CN, s). **4**: ¹H $\delta 0.11$ (SiMe₃, s), 0.22 (SiMe₃, s), 3.67 (CH, s); ⁷Li [¹H] $\delta 0.88$; ¹³C[¹H] $\delta 83.1$ (CH, s), 175.9 (CN, s). **5**: ¹H $\delta 0.07$ (SiMe₃, s), 0.11 (SiMe₃, s), 5.57 (CH, s); ⁷Li [¹H] $\delta 1.45$; ¹³C[¹H] $\delta 105.1$ (CH), 169.0, 177.9 (CN, s). **6**: ¹H $\delta 0.24$ (SiMe₃, s), 0.45 (SiMe₃, s), 4.79 (CH, s); ⁷Li [¹H] $\delta 1.54$; ¹³C[¹H] $\delta 96.7$ (CH, s), 154.1 (*C*=CH, s), 165.7 (CN₂, s). **7a**: ¹H $\delta - 1.94$ (CHSi₂, s), 5.51 (CH, s); ⁷Li [¹H] $\delta 2.30$ (s); ¹³C[¹H] $\delta 1.8$ (CHSi₂, s), 105.4 (CH, s), 177.2 (CN, s). **7b**: ¹H $\delta - 1.90$ (CHSi₂, s), 5.09 (CH, s); ⁷Li [¹H] $\delta 2.30$ (s); ¹³C[¹H] $\delta 1.8$ (CHSi₂, s), 105.4 (CH, s), 177.2 (CN, s). **7b**: ¹H $\delta - 1.90$ (CHSi₂, s), 5.09 (CH, s); 7Li [¹H] $\delta 2.30$ (s); ¹³C[¹H] $\delta 1.4$ (CHSi₂, s), 105.4 (CH, s), 176.8 (CN, s).

¶ Crystal data for **7b**: $C_{32}H_{56}Li_2N_2OSi_4$, M = 611.0, orthorhombic, space group $P2_1nm$ (non-standard no. 31), a = 9.043(4), b = 11.943(5), 18.406(10) Å, U = 1980(2) Å³, Z = 2, $D_c = 1.02$ Mg m⁻³, F(000) = 664, λ (Mo-K α) 0.71073 Å, $\mu = 0.173$ mm⁻¹. Data were collected at 173(2) K on a Enraf Nonius CAD4 diffractometer in the ω -2 θ mode for the range 2 < θ < 25°. The structure was solved by direct methods (SHELXS86) and refined with full matrix least squares on all F2 (SHELXL93). The molecule is disordered across the crystallographic mirror plane with ordered sites for the Li, Si, O, C(6), C(7) and C(13) atoms and the [(R)NC(Ph)C(H)C(Ph)N(R)] ligand. Distances from Si(2) to C(8), C(9) and C(20) were fixed at 1.88 Å. Two reflections badly affected by extinction were omitted. All non-hydrogen atoms were anisotropic, and hydrogen atoms were included in the riding mode with $U_{iso}(H) = 1.2$ $U_{\rm eq}(C)$ or 1.5 $U_{\rm eq}$ for Me groups, except for the disordered thf group for which H atoms were omitted. Final residuals for 1921 independent reflections were $R_1 = 0.162$, $wR_2 = 0.272$ and for the 1009 with $I > 2\sigma(I)$, $R_1 = 0.092, wR_2 = 0.220.$ CCDC 182/683.

- 1 P. B. Hitchcock, M. F. Lappert and D.-S. Liu, J. Chem. Soc., Chem. Commun., 1994, 1699.
- 2 P. B. Hitchcock, M. F. Lappert and D.-S. Liu, J. Chem. Soc., Chem. Commun., 1994, 2637.
- 3 H. M. Walborsky, W. H. Morrison and G. E. Niznik, J. Am. Chem. Soc., 1970, 92, 6675; H. M. Walborsky and P. Ronman, J. Org. Chem., 1978, 43, 731.
- 4 R. West, Adv. Organomet. Chem., 1977, 16, 1.
- 5 H. M. Walborsky, G. E. Niznik and M. P. Periasamy, *Tetrahedron*, 1971, 52, 4965; M. P. Periasamy and H. M. Walborsky, *J. Org. Chem.*, 1974, 74, 611.
- 6 (a) B. Ledig, M. Marsch, K. Harms and G. Boche, *Angew. Chem., Int. Ed. Engl.*, 1992, **31**, 79; (b) J. D. Fischer, M.-Y. Wei, R. Willett and P. J. Shapiro, *Organometallics*, 1994, **13**, 3324.
- 7 J. L. Atwood, T. Fjeldberg, M. F. Lappert, N. T. Luong-Thi, R. Shakir and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1984, 1163.

Received in Cambridge, UK, 15th September 1997; 7/06709G