Selective formation of $\text{HCO}_2\text{--}$ and $\text{C}_2\text{O}_4{}^2\text{--}$ in electrochemical reduction of CO_2 **catalyzed by mono- and di-nuclear ruthenium complexes**

Md. Meser Ali,*a* **Hiroyasu Sato,***a* **Tetsunori Mizukawa,***b* **Kiyoshi Tsuge,***b* **Masa-aki Haga***b* **and Koji Tanaka****b*

a Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama Cho, Tsu 514, Japan b Institute for Molecular Science, Department of Structural Molecular Science, Myodaiji, Okazaki 444, Japan

Electrochemical reduction of carbon dioxide catalyzed by mono- and di-nuclear ruthenium complexes produced $HCO₂H$ with trace amounts of CO and $C₂O₄²$ in the **presence and absence of H2O, respectively, in MeCN.**

Reduction of $CO₂$ accompanied by carbon–carbon bond formation is highly desired because the electrochemical reduction of $CO₂$ catalyzed by metal complexes usually produces only CO and/or HCO_2H .^{1–6} A key process for the activation of $CO₂$ on metals is how to create coordinately unsaturated low valent metal centers under mild conditions. We have found that $[(CpM)₃(\mu₃-S)₂]^{2+} (M = Co, Rh, Ir)⁷ catalyzes electrochemical$ reduction of $CO₂$ to produce oxalate selectively, where the reaction sites for the first catalytic formation of $C_2O_4^{2-}$ are presumed to be created by an M–M bond cleavage upon the two-electron reduction of these M_3S_2 clusters. Metal complexes with unsymmetrical chelating rings may also provide sites for activation of $CO₂$ by dechelation in the electrochemical reduction of $CO₂$. We introduced 2,2'-bis(1-methylbenzimidazol-2-yl)-4,4'-bipyridine (dmbbbpy) as an unsymmetrical chelating ligand into a $Ru(bpy)_2$ moiety to aim not only to create reaction sites by opening the chelate ring but also to accumulate electrons into the ligand required in the reduction of $CO₂$. Here, we report almost selective HCO₂H and $C_2O_4^{2-}$ formation depending on the presence and the absence of H_2O in electrochemical reduction of $CO₂$ catalyzed by mono- and dinuclear Ru complexes.

Scheme 1 shows the synthetic route for 2.2^{\prime} -bis(1-methylbenzimidazol-2-yl)-4,4'-bipyridine (dmbbbpy) and the monoand di-nuclear ruthenium complexes. Mono- (**1**) and di-nuclear Ru complexes (**2**) were synthesized by the reaction of $[Ru(bpy)₂Cl₂]$ with dmbbbpy with mol ratios of 1:1 and 2:1, respectively, in ethylene glycol. Both complexes were purified by column chromatography and characterized by electrospray MS and elemental analyses.

Scheme 1 Synthesis route for the bridging ligand, Ru mono- and di-nuclear complexes. *Reagents and conditions*: i, MeCO₂H + H₂O₂; ii, (MeO)₂SO₂, KCN; iii, *N*-methyl-1,2-phenylenediamine; iv, RuL_2Cl_2 (L = bpy).

The cyclic voltammogram (CV) of **1** exhibited three reversible one electron redox couples at $E_{1/2} = -1.45, -1.75$ and -1.99 V in MeCN resulting from dmbbbpy and two bpy based reductions, respectively. Complex **2** also showed three reversible redox couples with a small positive shift (0.2 V) of the dmbbbpy based redox wave. Introduction of $CO₂$ by bubbling into the solutions of **1** and **2** results in an increase in the cathodic currents at potentials more negative than -1.60 and -1.50 V, respectively, indicating that two-electron reduced forms of **1** and **2** have an ability to catalyze the reduction of $CO₂$ (Fig. 1).

Controlled potential electrolysis of **1** and **2** (0.2–0.3 mmol dm⁻³) at -1.65 and -1.55 V (*vs.* Ag/AgCl) was conducted in $CO₂$ saturated MeCN (20 ml) in the presence of H2O (0.5 ml). After 91 C was passed in the electrolysis of **1**,† $HCO₂$ was produced with a current efficiency (η) of 89% together with a trace amount of CO ($\eta = 2-3\%$). On the other hand, the similar electrochemical reduction of $CO₂$ in dry MeCN selectively produced oxalate[†] with an η of 64% without forming HCO_2^- and CO after 50 C was passed in the electrolysis. The electrochemical reduction of $C\hat{O}_2$ catalyzed by **2** also generated almost selectively HCO_2^- ($\eta = 90\%$) and $C_2O_4^{2-}$ ($\eta = 70\%$) in the presence and the absence of H₂O, respectively, under similar conditions.

The reaction of $CO₂$ catalyzed by 1 was monitored in an IR cell with KBr windows equipped with a gold mesh for the working electrode, a platinum wire for a counter electrode and an Ag/AgCl reference electrode.8 Reductive electrolysis at -1.65 V§ of 1 in CO₂-saturated CD₃CN solution resulted in the appearance of three bands at 1684, 1633 and 1603 cm^{-1} $[\overrightarrow{Fig. 2(b)}]$. Reoxidation at -0.70 V causes the disappearance of the 1684 and 1603 cm⁻¹ bands, while the 1633 cm⁻¹ band assigned to $C_2O_4^2$ remained unchanged. The three bands at 1684, 1633 and 1603 cm⁻¹ shifted to 1638, 1600 and 1540 cm^{-1} , respectively, under similar electrolysis using ¹³CO₂

Fig. 1 Cyclic voltammograms of 0.3 mm 1 or 2 in 0.1 m NBu₄BF₄MeCN at glassy carbon electrode (id = 3.0 mm) under N2 (——) and CO2 (------) atmospheres. Scan rate = 50 mV s^{-1} .

*Chem. Commun***., 1998 249**

1

Fig. 2 IR spectra of 1 (0.8 mm) during a thin-cell bulk electrolysis in $CD₃CN$ with LiBF₄. (*a*) Starting scan, (*b*) using ¹²CO₂, (*c*) using ¹³CO₂.

[Fig. $2(c)$]. The bands at 1638 and 1540 cm⁻¹ also disappeared upon reoxidation at -0.70 V suggesting that a $CO₂$ adduct probably formed by an attack of two molecules of $CO₂$ to the two-electron reduced form of **1** which acts as a precusor to oxalate in the electrochemical reduction of $\overrightarrow{CO_2}$ in dry MeCN.

It is noteworthy that any interaction between reduced forms of $[Ru(bpy)_2L]^{2+}$ (L = bpy or 2-pyridyl-1-methylbenzimidazole \parallel) and $CO₂$ was not observed at all in the CV in MeCN. Indeed, these complexes have no ability to catalyze the electrochemical reduction of $CO₂$ under controlled potential electrolysis even at -1.80 V in the absence or presence of H₂O in MeCN. Moreover, $[Ru(bpy)_2(CO)X]^{n+}$ ($n = 2$, $X = CO$; n $= 1, X = Cl$ ⁹ works as an effective catalyst producing CO and/ or $HCO₂H$ in the electrochemical reduction of $CO₂$ under protic conditions, but the complex readily decomposes in the similar reduction of $CO₂$ in the absence of proton donor. Savéant and coworkers have shown that aromatic nitriles and esters with redox potentials more negative than -1.93 V mediate electrochemical reduction of \overline{CO}_2 affording oxalate. The reaction is explained by an electrophilic attack of $CO₂$ to oxygen or nitrogen of the anion radicals followed by homolytic cleavage of the $AY-CO_2^-$ [X = OC(O)R, CN] bond and the subsequent coupling of free CO_2 ⁻⁻¹⁰ On the other hand, the IR spectra of **1** showed the two $v(CO_2)$ bands (1684, 1603 cm⁻¹) assignable to the precursor for oxalate under electrolysis at -1.65 V, suggesting that oxalate generation in the present study does not result from dimerization of free CO_2 ⁻⁻. If two-electron

reduction of **1** and **2** causes dechelation of dmbbbpy, the resultant five-coordinate Ru and monodentate dmbbbpy \bar{y} may provide two binding sites for an attack of $CO₂$, which would facilitate a coupling reaction of $CO₂$ affording oxalate. Thus, dmbbbpy of **1** and **2** greatly contributes to the first selective formation of $C_2O_4^2$ and HCO_2 depending upon the absence and the presence of H_2O , respectively, in the electrochemical reduction of $CO₂$.

This work was partly supported by Grant-in-Aid for Scientific Research on Priority Areas (No. 283, 'Innovative Synthetic Reactions') from Monbusho, and the authors also thank Monbusho for a scholarship (to M. M. A.).

Footnotes and References

* E-mail: ktanaka@ims.ac.jp

† HCO2H was characterized using an isotachophoretic analyzer and 13C NMR spectroscopy.

‡ Oxalate was characterized using an isotachophoretic analyzer [GC–MS (diester derivative, by esterification with diazomethane)] and 13C NMR spectroscopy.

§ Electrolysis of 1 at potentials more negative than -1.75 V resulted in rapid growth of the 1633 cm^{-1} band so that electrolysis was conducted at -1.65 V to detect the emergence of the 1684 and 1603 cm⁻¹ bands clearly.

 $\langle \text{[Ru(bpy)}_2L \text{]}^{2+}(L = 2\text{-pyridyl-1-methylbenzimidazole})\rangle$ was prepared and characterized by electrospray MS and elemental analyses.

- 1 F. Hutschka, A. Dedieu, M. Eichberger, R. Fornika and W. Leitner, *J. Am. Chem. Soc*., 1997, **119**, 4433.
- 2 P. G. Jessop, Y. Hsiao, T. Ikaiya and R. Noyori, *J. Am. Chem. Soc*., 1996, **118**, 352.
- 3 W. Leitner, *Angew. Chem., Int. Ed. Engl.,* 1995, **34**, 2207; P. G. Jessop, T. Ikaiya and R. Noyori, *Chem. Rev*., 1995, **95**, 259.
- 4 K. M. Lam, K. Y. Wong, S. M. Yang and C. M. Che, *J. Chem. Soc., Dalton Trans*., 1995, 1103; H. Nakajima, T. Mizukawa, H. Nagao and K. Tanaka, *Chem. Lett*., 1995, 251.
- 5 A. M. Herring, B. D. Steffy, A. Miedaner, S. A. Wander and D. L. DuBois, *Inorg. Chem*., 1995, **34**, 1100; R. Fornica, B. Seemann and W. Leitner, *J. Chem. Soc*., *Chem. Commun.*, 1995, 1479.
- 6 P. G. Jessop, T. Ikaiya and R. Noyori, *Nature*, 1994, **368**, 232; M. Collomb-Dunand-Saider, A. Deronizer and R. Ziessel, *J. Chem. Soc., Chem. Commun.*, 1994, 189.
- 7 Y. Kushi, H. Nagao, T. Nishioka, K. Isobe and K. Tanaka, *J. Chem. Soc., Chem. Commun.*, 1995, 1223; Y. Kushi, H. Nagao, T. Nishioka, K. Isobe and K. Tanaka, *Chem. Lett*., 1994, 2176.
- 8 H. Nakajima, Y. Kushi, H. Nagao and K. Tanaka, *Organometallics*, 1995, **14**, 181.
- 9 I. Ishida, K. Tanaka and T. Tanaka, *Organometallics*, 1987, **6**, 181.
- 10 A. Gennaro, A. A. Isse, J.-M. Saveant, M.-G. Severin and E. Vianello, *J. Am. Chem. Soc.,* 1996, **118**, 7190.

Received in Cambridge, UK, 13th October 1997; 7/07363A