# Either $\gamma$ -syn- or $\gamma$ -anti-selective palladium-catalysed carbonyl allylation by mixed (*E*)- and (*Z*)-1,3-dichloropropene with tin(II) halides

### Yoshiro Masuyama,\* Akihiro Ito and Yasuhiko Kurusu

Department of Chemistry, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102, Japan

## Palladium-catalysed carbonyl allylations by mixed (E)- and (Z)-1,3-dichloropropene with SnI<sub>2</sub>-Bu<sub>4</sub>NI and SnCl<sub>2</sub> diastereoselectively produce syn and anti 1-substituted 2-chlorobut-3-en-1-ols, respectively. These are transformed into *cis* and *trans* 1-substituted 2-vinyl epoxides.

Barbier-type carbonyl allylations by (E)- $\gamma$ -substituted allylic metal reagents, derived from (E)- $\gamma$ -substituted allylic halides with metals or metal halides, usually add anti-diastereoselectively at the  $\gamma$ -position of the allylic metal reagents to aldehydes; y-anti-selective carbonyl allylation.1 y-syn-Selection is difficult for the Barbier-type carbonyl allylations by (E)- $\gamma$ -substituted allylic metal reagents. We have found that halogens on the tin of but-2-enyltin reagents, prepared from (E)-rich 1-bromobut-2-ene and tin(II) halides, affect the diastereoselectivity in the  $\gamma$ -regioselective carbonyl allylation in THF-H<sub>2</sub>O at room temperature; anti-selection with tin(II) chloride and syn-selection with tin(II) iodide-tetrabutylammonium bromide (or iodide).<sup>2</sup> We thus hoped that palladiumcatalysed carbonyl allylation<sup>3</sup> by (E)-rich 3-chloroprop-2envltin reagents, derived from (E)- and (Z)-mixed 1,3-dichloropropene (1)<sup> $\dagger$ </sup> with SnCl<sub>2</sub> or SnI<sub>2</sub>-Bu<sub>4</sub>NI via the formation of 1-chloro-syn- $\pi$ -allylpalladium complex, could lead to halogencoordination controlled diastereoselectivity to produce diastereo-defined 1-substituted 2-chlorobut-3-en-1-ols, which could be transformed into the corresponding 1-substituted 2-vinyl epoxides (Scheme 1).5

Diastereoselectivity in the allylation of benzaldehyde by (E)and (Z)-mixed 1,3-dichloropropene (1) in 1,3-dimethylimidazolidin-2-one (DMI)-H2O<sup>+</sup> was investigated with tin(II) halides (SnX<sub>2</sub>) and tetrabutylammonium halides (TBAX'). To a solution of  $SnX_2$  (2.0 mmol) and TBAX' (2.0 mmol) in DMI (3 ml)-H<sub>2</sub>O (0.1 ml) in the presence or absence of a catalytic amount of PdCl<sub>2</sub>(PhCN)<sub>2</sub> (0.02 mmol) was added 1 (2.0 mmol), and the solution was stirred at room temperature for 24 h. Benzaldehyde (1.0 mmol) was added to the solution, which was then stirred at room temperature. After the usual work-up, 2-chloro-1-phenylbut-3-en-1-ol (2, R=Ph) was obtained. The results are summarized in Table 1. The palladium-catalysed carbonyl allylation with SnCl<sub>2</sub> in DMI without H<sub>2</sub>O led to usual anti-selectivity.3 For addition of TBAX', the carbonyl allylation with SnBr<sub>2</sub> or SnI<sub>2</sub> proceeded without any palladium catalyst. Use of either iodide (SnI2 or TBAI) enhanced both the yield and the syn-selectivity. Addition of a catalytic amount



| X                | X'         | t/h | Yield <sup><math>a</math></sup> of<br>(R = Ph)<br>(%) | $2\mathbf{s}: 2\mathbf{a}^b$ |  |
|------------------|------------|-----|-------------------------------------------------------|------------------------------|--|
| Cl <sup>c</sup>  | d          | 24  | 88                                                    | 41:59                        |  |
| $Cl^e$           | d          | 65  | 70                                                    | 22:78                        |  |
| Br               | Br         | 130 | 22                                                    | 46:54                        |  |
| Br               | Ι          | 125 | 87                                                    | 85:15                        |  |
| I                | Br         | 121 | 66                                                    | 90:10                        |  |
| I                | Ι          | 122 | 63                                                    | 92:8                         |  |
| $\mathbf{I}^{c}$ | Ι          | 70  | 65                                                    | 91:9                         |  |
| Ic               | <b>I</b> f | 71  | 65                                                    | 92:8                         |  |

**Table 1** Allylation of benzaldehyde by 1.3-dichloropropene (1)

<sup>*a*</sup> Isolated yields. <sup>*b*</sup> The ratio was determined by <sup>1</sup>H NMR spectroscopy (JEOL GX-270).§ <sup>*c*</sup> PdCl<sub>2</sub>(PhCN)<sub>2</sub> as a catalyst was added. <sup>*d*</sup> No TBAX' was used. <sup>*e*</sup> The reaction was carried out without H<sub>2</sub>O at 0 °C. <sup>*f*</sup> TBAI (0.2 mmol) and NaI (2.0 mmol) were used.

 $PdCl_2(PhCN)_2$  accelerated the carbonyl allylation with  $SnI_2$  and TBAI without lowering the *syn*-selectivity. The reaction with NaI accompanied by a catalytic amount of TBAI exhibited the same reactivity and selectivity as those of the reaction with an equimolar amount of TBAI to **1**.

Either syn- or anti-selective palladium-catalysed allylations of various aldehydes by 1 were carried out with  $SnI_2$ -TBAI-

Table 2 Diastereoselective carbonyl allylation by 1<sup>a</sup>

| A:<br>ClyCl<br>B:<br>1                                             | A: (1) Pd/SnCl <sub>2</sub> , DMI,<br>room temp., 24 h<br>(2) RCHO, 0 °C<br>B: (1) Pd/Snl <sub>2</sub> , DMI–H <sub>2</sub> O,<br>room temp., 24 h<br>(2) TBA–Nal, room temp., 3 h<br>(3) RCHO |     | OH<br>CI<br>2s, syn                       | OH<br>CI<br>2a, anti |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------|----------------------|
| R                                                                  | Method                                                                                                                                                                                         | t/h | Yield <sup><i>b</i></sup> of <b>2</b> (%) | 2s : 2a <sup>c</sup> |
| 4-CIC-H                                                            | Δ                                                                                                                                                                                              | 70  | 74                                        | 14.86                |
| $4 - C C_6 H_4$                                                    | B                                                                                                                                                                                              | 71  | 80                                        | 93.7                 |
| 4-NCC <sub>6</sub> H <sub>4</sub>                                  | Ă                                                                                                                                                                                              | 71  | 71                                        | 15:85                |
| 4-NCC <sub>6</sub> H <sub>4</sub>                                  | В                                                                                                                                                                                              | 68  | 72                                        | 91:9                 |
| $4-H_3CC_6H_4$                                                     | А                                                                                                                                                                                              | 62  | 58                                        | 20:80                |
| $4-H_3CC_6H_4$                                                     | В                                                                                                                                                                                              | 72  | 49                                        | 91:9                 |
| 3,4-(CH <sub>2</sub> O <sub>2</sub> )C <sub>6</sub> H <sub>3</sub> | А                                                                                                                                                                                              | 78  | 56                                        | 24:76                |
| 3,4-(CH <sub>2</sub> O <sub>2</sub> )C <sub>6</sub> H <sub>3</sub> | В                                                                                                                                                                                              | 97  | 24                                        | 93:7                 |
| $(E)-C_6H_5CH=CH$                                                  | А                                                                                                                                                                                              | 72  | 78                                        | 15:85 <sup>a</sup>   |
| (E)-C <sub>6</sub> H <sub>5</sub> CH=CH                            | В                                                                                                                                                                                              | 96  | 53                                        | $77:23^{d}$          |
| C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CH <sub>2</sub>      | А                                                                                                                                                                                              | 71  | 58                                        | 32:68                |
| C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CH <sub>2</sub>      | В                                                                                                                                                                                              | 96  | 64                                        | 76:24                |
| $CH_3(CH_2)_5$                                                     | А                                                                                                                                                                                              | 93  | 48                                        | 36:64                |
| $CH_3(CH_2)_5$                                                     | В                                                                                                                                                                                              | 95  | 48                                        | 84:16                |
| CH <sub>2</sub> =CH(CH <sub>2</sub> ) <sub>8</sub>                 | А                                                                                                                                                                                              | 70  | 62                                        | 26:74                |
| CH <sub>2</sub> =CH(CH <sub>2</sub> ) <sub>8</sub>                 | В                                                                                                                                                                                              | 94  | 63                                        | 78:22                |
|                                                                    |                                                                                                                                                                                                |     |                                           |                      |

<sup>*a*</sup> The allylation of aldehydes (1.0 mmol) by **1** (2.0 mmol) was carried out with  $PdCl_2(PhCN)_2$  (0.02 mmol),  $SnX_2$  (2.0 mmol), TBAI (0.2 mmol) and NaI (2.0 mmol) in DMI (3 ml) and  $H_2O$  (0.1 ml). <sup>*b*</sup> Isolated yields. <sup>*c*</sup> The ratio was determined by <sup>1</sup>H NMR spectroscopy (JEOL GX-270).§ <sup>*d*</sup> The ratios (*cis* : *trans*) refer to the corresponding vinyl epoxides.

### Chem. Commun., 1998 315



**Scheme 2** Plausible mechanism in either  $\gamma$ -*syn*- or  $\gamma$ -*anti*-selective palladium-catalysed carbonyl allylation by mixed (*E*)- and (*Z*)-1,3-dichloropropene (1)

NaI and SnCl<sub>2</sub> in DMI–H<sub>2</sub>O and DMI, respectively, as shown in Table 2. Any aldehyde, such as aromatic aldehydes bearing either an electron-donating group or an electron-withdrawing group,  $\alpha$ , $\beta$ -unsaturated aldehydes, and aliphatic aldehydes, can be used for the diastereo-defined carbonyl allylation. 1-Substituted 2-chlorobut-3-en-1-ols **2**, which are chlorohydrins, were transformed into the corresponding 1-substituted 2-vinyl epoxides **3** with aqueous NaHCO<sub>3</sub>–THF solution in 70–90% yields [reaction (1)]. The *cis*: *trans* ratios of **3** were similar to the *syn*: *anti* ratios of **2**.§

The *anti*-selection with SnCl<sub>2</sub> probably occurs *via* the usual six-membered cyclic transition states (coordination) between (*E*)-rich 3-chloroprop-2-enyltrichlorotin, derived from *syn*-rich 1-chloro- $\pi$ -allylpalladium chloride and tin(II) chloride, and aldehydes.<sup>1</sup> The coordination suggests high Lewis acidity of tin



in (*E*)-3-chloroprop-2-enyltrichlorotin, as shown in Scheme 2. However, *syn*-selectivity with  $SnI_2$ -TBAI (–NaI) probably occurs *via* acyclic antiperiplanar transition states between pentacoordinate 3-chloroprop-2-enyltetraiodotin, in which the tin has no Lewis acidity, and aldehydes.<sup>2</sup> The *syn*-selection *via* the acyclic antiperiplanar transition state is independent of the olefinic geometry of 3-chloroprop-2-enyltin intermediate, in contrast to the *anti*-selection *via* the six-membered cyclic transition state.<sup>1</sup> Thus the *syn*-selectivity with SnI<sub>2</sub>-TBAI is probably superior to the *anti*-selectivity with SnCl<sub>2</sub>.

#### **Notes and References**

\* E-mail: y-masuya@hoffman.cc.sophia.ac.jp

† 1,3-Dichloropropene (1, E:Z = 48:52) was purchased from Tokyo Chemical Industry Co.

<sup>‡</sup> DMI-H<sub>2</sub>O is a most effective solvent in *syn*-selective carbonyl allylation by 1-chlorobut-2-ene with SnI<sub>2</sub>-TBAI.

§ The syn (2s) and anti (2a) structures were determined by the ratios and structures of the *cis*- (3c) and *trans*-epoxides (3t). The *cis* (3c) and *trans* (3t) structures of the epoxides were determined from the coupling constants of vicinal protons of the epoxides in <sup>1</sup>H NMR spectra (JEOL GX-270);  $J_{cis} = 4.27-4.28$  and  $J_{trans} = 2.03-2.45$  Hz.<sup>5</sup>

- 1 For a review, see: Y. Yamamoto and N. Asao, *Chem. Rev.*, 1993, **93**, 2207.
- 2 Y. Masuyama, M. Kishida and Y. Kurusu, *Tetrahedron Lett.*, 1996, **37**, 7103.
- 3 For palladium-catalysed carbonyl allylation, see: Y. Masuyama, J. Synth. Org. Chem. Jpn., 1992, 50, 202; Y. Masuyama, in Advances in Metal-Organic Chemistry, ed. L. S. Liebeskind, JAI Press, Greenwich, 1994, vol. 3, p. 255.
- 4 For carbonyl allylation by (Z)-rich 1-chloro-3-iodoprop-1-ene with tin(II) chloride, see: J. Auge and S. David, *Tetrahedron Lett.*, 1983, 24, 4009.
- 5 S. Hu, S. Jayaraman and A. C. Oehlschlager, J. Org. Chem., 1996, 61, 7513 and references cited therein.

Received in Cambridge, UK, 3rd November 1997; 7/07865J