Efficient synthesis of a new, highly versatile chiral derivatizing agent, α -cyano- α -fluoro-*p*-tolylacetic acid (CFTA)

Yoshio Takeuchi,^{*a} Miyuki Konishi,^a Hitoshi Hori,^a Tamiko Takahashi,^a Tadashi Kometani^b and Kenneth L. Kirk^c

^a Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-01, Japan

^b Toyama National College of Technology, Hongo 13, Toyama 939, Japan

^c Laboratory of Bioorganic Chemistry NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA

The new and versatile chiral derivatizing agent, α -cyano- α -fluoro-*p*-tolylacetic acid (CFTA), has been efficiently synthesized in optically pure form by *Candida rugosa* lipasemediated kinetic resolution of racemic CFTA ethyl ester, the latter being readily prepared by fluorination of ethyl α -cyano-*p*-tolylacetate with FClO₃.

Rapid progress has been made in the development of techniques for determination of ees of chiral molecules. However, despite many advances, there are few agents that can be applied to a broad spectrum of molecules encountered in modern synthetic and analytical chemistry.¹ We recently developed one such agent, α -cyano- α -fluorophenylacetic acid (CFPA), which far surpassed the capabilities of existing chiral derivatizing agents (CDAs) with respect both to reactivity² and resolution efficiency.³ However, the involved synthesis of this agent has precluded its general use. We now report a related CDA, α -cyano- α -fluoro-*p*-tolylacetic acid (CFTA), that retains the merits of CFPA but, through effective use of enzymatic resolution, is readily available in its optically pure state.

Treatment of *p*-xylyl cyanide with CO(OEt)₂ produced ethyl α -cyano-*p*-tolylacetate which, in turn, was treated with FClO₃⁺ to give CFTA ethyl ester 1 in excellent overall yield. Among twenty commercial hydrolytic enzymes that were screened for the enantioselective hydrolysis of 1, Candida rugosa lipase (CRL)[‡] gave the best results with respect to reactivity, although the enantioselectivity (E value⁵ of ca. 3) was clearly insufficient for our purposes. Fortunately, after much investigation, we found that pre-treatment of CRL with PriOH improved the enantioselectivity more than ten-fold, consistent with the previous results obtained by Kazlauskas for the resolution of 2-aryl- and 2-aryloxy-propionic esters.⁶ Thus, hydrolysis of racemic ester 1, catalysed by pre-treated commercial CRL [50% (v/v) PriOH in 2-(N-morpholino)ethanesulfonate buffer solution (pH 6.0), according to the procedure of Kazlauskas], gave, at 56% conversion, (R)-1 with an ee of 99% and (S)-CFTA [(S)-2] with an ee of 78%, corresponding to an E value of 40 (Scheme 1). This dramatic increase in enantioselectivity can be attributed to a change in stereostructure of CRL caused by PriOH treatment, as demonstrated earlier by Kazlauskas (see below).6

The *R* configuration of the remaining ester **1** was determined by X-ray crystallographic analysis§ of the (S)- α -phenethylamide **3** prepared from **1**. Therefore, the more readily hydrolysed ester has the *S*-configuration and (S)-**2** is enriched in the product. Kazlauskas proposed an empirical rule¶ to predict the stereochemical outcome of ester hydrolysis catalysed by PriOH-treated CRL, as shown in Fig. 1.⁷ The active site of the CRL apparently accepts F as a replacement for H, with CN corresponding to the medium-sized substituent.

(*R*)-CFTA [(*R*)-2] was obtained by LiOH hydrolysis of the remaining ester (*R*)-1. The (*S*)- α -phenethylamine salt of (*R*)-2 and the (*R*)- α -phenethylamine salts of the (*S*)-2-enriched hydrolysis product were each recrystallized from CHCl₃-

hexane to afford optically pure enantiomers, the (R)- α -phenethylamine salt of (*S*)-CFTA {mp 135–137 °C, $[\alpha]_D^{25} - 3.3$ (*c* 0.99, MeOH)} and the (*S*)- α -phenethylamine salt of (*R*)-CFTA {mp 135–137 °C, $[\alpha]_D^{25} + 3.3$ (*c* 0.99, MeOH)}. These enantiomeric salts were treated with acid to afford (*R*)-CFTA { $[\alpha]_D^{25} + 36.8$ (*c* 1.21, CHCl₃)} and (*S*)-CFTA { $[\alpha]_D^{25} - 36.3$ (*c* 1.05, CHCl₃)} as colourless oils in isolated overall yields of 38 and 19%, respectively, from racemic CFTA ethyl ester.

Scheme 1 *Reagents and conditions*: i, NaH, CO(OEt)₂, THF, reflux, 2 h, 98%; ii, NaH, THF, room temp., 1 h, then FClO₃, room temp., 40 min, 90%; iii, PriOH-treated CRL, isooctane, 1 M phosphate buffer (pH 7.0), 25 °C, 41% for (*R*)-1 (99% ee), 46% for (*S*)-2 (78% ee); iv, 1 M LiOH, THF–H₂O (1 : 1), room temp., 5 min, 100%; v, (*S*)- α -phenethylamine, DCC, CH₂Cl₂, room temp., 6 h, 95%; vi, (*S*)- α -phenethylamine, recrystallization, then 1 M HCl, 78%; vii, (*R*)- α -phenethylamine, recrystallization, then 1 M HCl, 74%

Fig. 1 Enantiopreference of PrⁱOH-treated CRL-mediated kinetic hydrolysis

Chem. Commun., 1998 365

Table 1 ^{19}F NMR Chemical shift differences ($\Delta\delta_F$ values in ppm) for diastereomeric CFTA and MTPA esters

$\begin{array}{cccc} F & R^2 & CF_3 & R_2 \\ \rho\text{-Tol}-C^+-CO_2-C^{-R^1} & Ph-C^+-CO_2-C^{-R^1} \\ CN & H & OMe & H \\ CFTA ester & MTPA ester \end{array}$						
$\Delta \delta_{ m F} = \delta_{SR} - \delta_{RR}$						
\mathbb{R}^1	\mathbb{R}^2	CFTA ester	MTPA ester			
Me	Et	+0.09	0.00^{a}			
Me	Pr ⁱ	+0.51	-0.18^{a}			
Me	$C_{6}H_{11}$	+0.32	-0.05^{a}			
Me	Ph	+0.88	-0.20^{a}			
Bor	nyl	+0.71	$+0.10^{b}$			
Ment	ĥyl	+0.58	-0.12^{a}			

a Ref. 8. b Ref. 9.

Table 2 ¹H NMR Chemical shift differences ($\Delta \delta_{\rm H}$ values in ppm) for diastereometic CFTA and MTPA esters

$\begin{array}{cccc} F & R^2 & CF_3 & R^2 \\ \rho \text{-} \text{Tol} - C & CO_2 - C & R^1 & Ph - C & CO_2 - C & R^1 \\ CN & H & OMe & H \\ CFTA ester & MTPA ester \end{array}$								
		$\Delta \delta_{\rm H} = \delta_{SR}$	$\Delta \delta_{\rm H} = \delta_{SR} - \delta_{RR}$					
		CFTA ester		MTPA ester				
R1	\mathbb{R}^2	Me of R ¹	Me of R ²	Me of R ¹	Me of R ²			
Me Me Me Bor Men	Et Pr ⁱ C ₆ H ₁₁ Ph nyl thyl	+0.14 +0.16 +0.14 +0.10 +0.03 ^d	$\begin{array}{c} -0.22 \\ -0.19 \\ -0.03 \\ \\ -0.22^c \\ -0.26^e \\ -0.19^e \end{array}$	+0.13 ^a +0.08 ^a +0.08 ^a +0.06 ^a +0.03 ^{b,d}	$\begin{array}{c} -0.10^{a} \\ -0.08^{a} \\ - \\ - \\ - \\ - \\ 0.08^{b,c} \\ - \\ 0.12^{b,e} \\ - \\ 0.10^{b,e} \end{array}$			

^a Ref. 10. ^b Ref. 9. ^c C1-Me. ^d C5-Me. ^e Me of Prⁱ.

The chemical shift differences between the two diastereomers ($\Delta\delta$ values)** in both the ¹⁹F and ¹H NMR spectra for several CFTA and MTPA esters are shown in Tables 1 and 2, respectively.†† The greater efficiency of CFTA compared to MTPA in ee determinations is apparent from the much greater $\Delta\delta$ values consistently obtained for the CFTA derivatives.^{8–10} Furthermore, in addition to the greater magnitude of the $\Delta\delta$ values, the consistency of the sign of these shifts suggests that the CFTA procedure is more reliable¹¹ than the Mosher method in assigning absolute configurations of secondary alcohols based on ¹⁹F NMR^{8,9} and ¹H NMR^{9,10} spectroscopy. We are currently investigating in greater detail the relationship between stereostructure and chemical shift value, especially in the $^{19}\mathrm{F}$ NMR spectra.

We thank Ms H. Kakuda for the X-ray crystallographic analysis of **3**. This work was supported by a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture, Japan and a grant from the Ciba-Geigy Foundation (Japan).

Notes and References

* E-mail: takeuchi@ms.toyama-mpu.ac.jp

 \dagger FClO₃ gas diluted with N₂ is safely and conveniently generated in ordinary glassware by reaction of KClO₄ with FSO₃H (ref. 4).

‡ Lipase OF (CRL) was purchased from Meito Sangyo Co., Ltd.

§ *Crystal data* for **3**: C₁₈H₁₇FN₂O, M = 296.34, monoclinic, a = 9.647(2), b = 17.686(3), c = 9.915(2) Å, $\beta = 109.64(1)^\circ$, U = 1593.3(5) Å³, T = 203 K, space group $P2_1$ (no. 4), Z = 4, μ (Cu-K α) = 0.698 mm⁻¹, 2626 reflections measured, 2469 reflections unique, 1322 reflections observed [$I > 3\sigma(I)$]. Two aryl groups (phenyl and *p*-tolyl) were disordered over two positions with occupancies 0.5 for all disorder components. For this reason, the *R* value was relatively high. The final cycle of full-matrix least-squares refinement (for 218 parameters) was converged with $R_w = 0.111$, R = 0.116. CCDC 182/709.

¶ The rule was derived from the results of enantioselective hydrolysis of 16 esters, where L is a large substituent such as Ar or OAr, and M is a medium-sized substituent such as Me or OH (refs. 6 and 7).

|| The enantiomeric purity of both (*R*)- and (*S*)-CFTA was determined to be >99.5% by comparison of the ¹H and ¹⁹F NMR spectra of their cholesteryl esters with those of the cholesteryl ester of recemic CFTA.

** The $\Delta \delta$ value is defined as the difference in the ¹⁹F (F or CF₃ signal for CFTA or MTPA ester, respectively) or ¹H (Me signal of R¹ and R²) NMR chemical shifts for the (*S*)-agent/(*R*)-alcohol diastereomer (δ_{SR}) and the (*R*)-agent/(*R*)-alcohol diastereomer (δ_{RR}) for each CFTA or MTPA ester (ref. 9).

^{††} The preparation of CFTA chloride and condensation of CFTA chloride with chiral alcohols were carried out according to procedures described for derivatization of CFPA (ref. 3).

- S. Hamman, J. Fluorine Chem., 1993, 60, 225; Y. Takeuchi and T. Takahashi, in Enantiocontrolled Synthesis of Fluoro-organic Compounds. Stereochemical Challenges and Biomedical Targets, ed. V. Soloshonok, Wiley, Chichester, 1998 and references cited therein.
- 2 Y. Takeuchi, N. Itoh and T. Koizumi, J. Chem. Soc., Chem. Commun., 1992, 1514; Chem. Ind., 1992, 874.
- 3 Y. Takeuchi, N. Itoh, H. Note, T. Koizumi and K. Yamaguchi, J. Am. Chem. Soc., 1991, **113**, 6318; Y. Takeuchi, N. Itoh, T. Satoh, T. Koizumi and K. Yamaguchi, J. Org. Chem., 1993, **58**, 1812.
- 4 Y. Takeuchi, K. Nagata and T. Koizumi, J. Org. Chem., 1989, 54, 5453.
- 5 C. Chen, Y. Fujimoto, G. Girdaukas and C. J. Sih, J. Am. Chem. Soc., 1982, 104, 7294.
- 6 I. J. Colton, S. N. Ahmed and R. J. Kazlauskas, J. Org. Chem., 1995, 60, 212.
- 7 S. N. Ahmed, R. J. Kazlauskas, A. H. Morinville, P. Grochulski, J. D. Schrag and M. Cygler, *Biocatalysis*, 1994, **9**, 209.
- 8 G. R. Sullivan, J. A. Dale and H. S. Mosher, J. Org. Chem., 1973, 38, 2143.
- 9 I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa, J. Am. Chem. Soc., 1991, 113, 4092.
- 10 J. A. Dale and H. S. Mosher, J. Am. Chem. Soc., 1973, 95, 512.
- 11 T. Kusumi, J. Synth. Org. Chem., 1993, 51, 462 and references cited therein.

Received in Cambridge, UK, 28th October 1997; 7/07755F