Structure and molecular magnetism of the rutile-related compounds M(dca)₂, $M = Co^H, Ni^H, Cu^H, dca = divyanamide, N(CN)₂$

Stuart R. Batten,*a,b* **Paul Jensen,***b* **Boujemaa Moubaraki,***b* **Keith S. Murray****b* **and Richard Robson****a*

a School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia b Department of Chemistry, Monash University, Clayton, Victoria 3168, Australia

The isomorphous rutile-related network structures of $Co(dca)₂$, $Ni(dca)₂$ and $Cu(dca)₂$, dca = dicyanamide, $N(CN)_2$ ⁻, are shown to behave as ferromagnets (T_c = 9 and **20 K) and a near-paramagnet, respectively.**

The deliberate design and construction of coordination polymers with predetermined topology is an area of much current interest. $1-3$ A number of new compounds with interesting properties such as high porosity and catalytic activity has been made following these principles. Here, we describe a series of such compounds which display unusual magnetic properties, including long-range ferromagnetic ordering. A number of existing coordination polymers are already known to display unusual magnetic properties. For instance, $(\text{rad})_2Mn_2\overline{C}u$ - $(opba)_{3}(Me_{2}SO)_{2}\cdot2\tilde{H}_{2}\tilde{O}$, $opba = o-phenylenebis(oxamato)$, rad+ = 2-(4-*N*-methylpyridinium)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide consists of two sets of 2D hexagonal sheets of $Mn_2[Cu(opba)]_3^2$ which interpenetrate each other at an angle of 72.7°.4 Rad+ cations connect the sheets, and the solid behaves as a magnet below 22.5 K. The magnetic properties of a large number of bimetallic oxalate structures, $\widehat{AMM}(\text{o}x)_3$ $(A^+ = NR_4^+),$ which have a hexagonal sheet structure, have also been studied recently.⁵ There is a great need to explore bridging groups other than these N,O-bonded oxamides and O-bonded oxalates.

The results described herein form part of a study we are undertaking on the binary structures of metal–pseudohalide compounds. The structures of $M(tcm)_{2}$, tcm = tricyanomethanide, $C(CN)_{3}$, $M = Cr^{II}$, Mn^{II} , Fe^{II} , Co^{II} , Ni^{II} , Cu^{II} , Zn^{II} , Cd^{II} , Hg^{II}, consist of two interpenetrating rutile nets,⁶ and have been found to display weak antiferromagnetic coupling.7 The structures and novel magnetochemistry of the binary metal complexes of dicyanamide, dca, $N(CN)_2$ ⁻, are now described.

Following the method of Köhler,⁸ combination of aqueous solutions of cobalt nitrate, nickel nitrate or copper nitrate with aqueous solutions of sodium dicyanamide results in small pink rods of $Co(dca)₂$, a blue microcrystalline powder of Ni $(dca)₂$, and green rods of $Cu(dca)_2$, respectively. As in Köhler's original work, there is evidence from IR and microanalytical data† for a small amount of water in $Ni(dca)_2$ even when we prepared it from $Ni(NO₃)₂·6H₂O$ in MeCN using $[N(\mathrm{PPh}_3)_2](\mathrm{dca})$.

The structure of $Cu(dca)$, was determined by single crystal X-ray crystallography.‡ It was found to consist of a single rutile-related network (Fig. 1). Each dca is coordinated to three metal atoms *via* the two nitrile nitrogens and the central amido nitrogen. Each copper in turn is coordinated to six dca ligands, four *via* the nitrile nitrogens and two *via* the amido nitrogens. The copper shows considerable Jahn–Teller distortion, with the two axial amido nitrogens considerably further from the copper $[2.478(2)$ Å] than the four equatorial nitrile nitrogens $[1.975(1)]$ Å]. There is evidence of $\pi-\pi$ interactions between pairs of dca ligands across the square channels seen in Fig. 1, with the closest interactions being $N_{\text{amido}}-N_{\text{amido}}$ 3.463 Å, C–C 3.513 Å and Namido–C 3.603 Å. The distortions in the framework seen in Fig. 1 may maximise these interactions. The structures of polycrystalline $Co(dca)_2$ and $Ni(dca)_2$ have been shown by X-ray powder diffraction to be isomorphous with $Cu(dca)₂$,§ but with a few very small peaks not indexing and not present in the XRD of $Cu(dca)₂$.

It is interesting to compare the structures of $M(dca)$ ₂ and $M(tcm)$. In both cases the networks have a rutile-like topology with six-connected metal centres and three-connected ligands. In M (tcm)₂, all three connections between the trigonal centres and the octahedral centres of the rutile networks are C–CN–M (*ca.* 4.50–4.99 Å), and the structures are composed of two interpenetrating networks. The interpenetration produces a tightly packed structure in which each of the nets is considerably distorted to accommodate the other. In $M(dca)_{2}$, two of these connections are N–CN–M (4.368 Å) , which are comparable with those in $M(tcm)_{2}$. The third connection between trigonal and octahedral nodes, however, is a direct N–M bond $[2.478(2)$ Å], and there is no longer enough room within the structure for a second rutile-related net to be accommodated. Indeed, the packing efficiency of $Cu(dca)_2$ is very similar to that of Cu(tcm)₂ ($D_c = 2.01$ and 1.918 g cm⁻³, volume/atom = 14.7 and 14.1 \AA ³, respectively.)

While Hvastijova *et al.*9 have made many studies of the magnetism of chain-like compounds of type $M(tcm)_{2}L_{2}$ and $M(dca)_{2}L_{2}$, where $L = pyridine$, imidazole, pyrazole, there have been no detailed studies until now on the parent

Fig. 1 The rutile-related structure of $Cu(dca)$. The circles represent in order of decreasing size Cu, N and C.

compounds. We find that $Cu(dca)_2$ shows near-Curie behaviour in a field of 1 T ($C = 0.438$ cm³ K mol⁻¹, $\theta = -1.8$ K) indicative of extremely weak antiferromagnetic coupling. The $\mu_{\rm eff}$ values decrease a little from 1.87 $\mu_{\rm B}$ at 300 K to 1.77 $\mu_{\rm B}$ at 4.2 K. Magnetization studies in a field of 5 Oe show that longrange ordering is not occurring above 2 K. Chain-like $Cu^{II}(dca)₂L₂$ adducts also display very weak coupling and longrange ordering at low temperautres has occasionally been claimed but without proof.9

In contrast, the $Co(dca)_2$ and $Ni(dca)_2$ samples both display well behaved long-range ferromagnetic ordering with T_c values, respectively, of 9 and 20 K. The first evidence of ferromagnetism is given in the Curie–Weiss susceptibility plots obtained in fields of 1 T. Positive Weiss constants are noted with best-fit parameters of *C* = 2.074, θ = +6.1 K (Co) and *C* = 1.086, θ = +21.4 K (Ni). In small applied fields of 5 Oe, the χ T values increase sharply at T_c reaching values much higher than anticipated for short-range order. Plots of field-cooled (FCM), zero-field cooled (ZFCM) and remanent magnetization (RM), shown in Fig. 2 for $Ni(dca)_2$, are typical of those expected for a magnetically ordered system.10 The very sharp increase in the magnetization isotherms at small field values, followed by a gradual increase towards a saturation magnetization value of $2N\mu_{\rm B}$ [for Ni(dca)₂] in high fields (Fig. 2), lends further support for a ferromagnetic phase transition. Hysteresis loops are observed with the value of the coercive field for $Ni(dca)₂$ being 191 Oe.

Fig. 2 (*a*) Plots of field-cooled (FCM), zero field-cooled (ZFCM) and remanent magnetization (RM) *vs.* temperature for Ni(dca)₂·*xH*₂O and (*b*) plots of magnetization, M (in units $N\mu_B$) *vs.* applied field at various temperatures for Ni(dca)₂·*x*H₂O: (⁶) 30 K, (\triangle) 20 K, (+) 10 K, (∇) 5 K

The origin of ferromagnetic ordering in the Co^{II} and Ni^{II} dca compounds and the lack thereof in the structurally characterized CuII species is intriguing and is being vigorously pursued. If we assume that the majority *Pnnm* phase in all three samples (*vide supra*) is responsible for the magnetic behaviour then Jahn– Teller distortions in $Cu(dca)_2$, along the $Cu-N(amido)$ links, may prevent magnetic interactions between $Cu(dca)₂$ chains in the crystal, while such interchain interactions can occur in the Co and Ni derivatives. This contrasts with the situation in one of the few know homometallic ferromagnetic systems $(NH_3R)_2[MX_4]$, $(Mn^{II} = Cu, Cr; X = Cl, Br)$, in which Jahn– Teller elongated M–X bonds within metal–halide layers are orthogonal from one MX_6 octahedron to the next,^{10,11} thus giving the required orthogonality of neighbouring magnetic orbitals. Orthogonality relationships are not obvious from Fig. 1 but presumably must involve the $M-N\equiv C-N-M$ pathways otherwise $Cu(dca)_2$ should behave likewise. In conclusion, it is clear that some of these d-blocks pseudohalide species provide new and fascinating examples of molecular magnets.

This work was supported by grants (to K. S. M. and R. R.) from the Australian Research Council.

Notes and References

* E-mail: Keith.S.Murray@sci.monash.edu.au

 \dagger Analyses: Cu(dca)₂. Found: C, 24.9; H, 0; N, 43.1. Calc. C, 24.6; H, 0; N,43.0%. Ni(dca) 2.0 . Found: C, 24.1; H < 0.2; N, 41.9. Calc C, 24.0; H, 0.5; N, 42.0%. $V(OH)$ 3400 cm⁻¹ (br), $\delta(OH)$ 1636 cm⁻¹. Co(dca)₂. Found: C, 25.2; H, 0; N, 44.2. Calc. C, 25.1; H, 0; N, 44.0%.

 \ddagger *Crystal data* for Cu(dca)₂: C₄CuN₆, *M* = 195.63, orthorhombic, space group *Pnnm* (no. 58), $a = 7.340(1)$, $b = 6.1218(8)$, $c = 7.1815(6)$ Å, $U = 322.69(7)$ Å³, $T = 293$ K, $Z = 2$, $F(000) = 190$, $D_c = 2.013$ g cm⁻³, μ (Mo-K α) = 3.312 mm⁻¹, $2\theta_{\text{max}}$ = 37.5°. A green rod (0.09 \times 0.09 \times 0.4 mm). Absorption corrections applied (T_{min} 0.9639, T_{max} 0.9817). 1426 total reflections, 905 independent reflections ($R_{\text{int}} = 0.0579$), of which 765 were observed $[I > 2\sigma(I)]$. At final convergence R_1 [*I* > $2\sigma(I)$] = 0.0260, *wR*₂ (all data) = 0.0802 for 29 parameters, *S* = 1.162. CCDC 182/723.

§ Common space group *Pnnm*: Co(dca)₂: $a = 7.301(7)$, $b = 6.014(4)$, *c* $= 7.073(5)$ Å; Ni(dca)₂: $a = 7.294(2)$, $b = 6.024(4)$, $c = 7.023(2)$ Å; Cu(dca)₂: $a = 7.352(2)$, $b = 6.126(1)$, $c = 7.180(1)$ Å.

- 1 R. Robson, B. F. Abrahams, S. R. Batten, R. W. Gable, B. F. Hoskins and J. Liu, *Supramolecular Architecture*, ed. T. Bein, *ACS Symp. Ser. 499,* Washington, DC, 1992, ch. 19.
- 2 B. F. Abrahams, S. R. Batten, H. Hamit, B. F. Hoskins and R. Robson, *Angew. Chem., Int. Ed. Engl.,* 1996, **35**, 1691; B. F. Hoskins, R. Robson and D. A. Slizys, *J. Am. Chem. Soc.,* 1997, **119**, 2952; B. F. Abrahams, S. J. Egan, B. F. Hoskins and R. Robson, *Chem. Commun.,* 1996, 1099.
- 3 C. L. Bowes and G. A. Ozin, *Adv. Mater.,* 1996, **8**, 13; M. J. Zaworotko, *Coord. Chem. Rev.,* 1994, 283; M. Bertelli, L. Carlucci, G. Ciani, D. M. Proserpio and A. Sironi, *J. Mater. Chem.,* 1997, **7**, 1271; K. A. Hirsch, S. R. Wilson and J. S. Moore, *Inorg. Chem.,* 1997, **36**, 2960; O. M. Yaghi, C. E. Davis, G. Li and H. Li, *J. Am. Chem. Soc.,* 1997, **119**, 2861.
- 4 H. O. Stumpf, L. Ouahab, Y. Pei, D. Grandjean and O. Kahn, *Science,* 1993, **261**, 447; H. O. Stumpf, L. Ouahab, Y. Pei, P. Bergerat and O. Kahn, *J. Am. Chem. Soc.,* 1994, **116**, 3866.
- 5 P. Day, *J. Chem. Soc., Dalton Trans.,* 1997, 701; H. Tamaki, Z. J. Zhong, N. Matsumoto, S. Kida, M. Koikawa, N. Achiwa, Y. Hashimoto and H. Okawa, *J. Am. Chem. Soc.,* 1992, **114**, 6974; S. Decurtins, H. W. Schmalle, H. R. Oswald, A. Linden, J. Ensling, P. Gutlich and A. Hauser, *Inorg. Chim. Acta,* 1994, **216**, 65; L. O. Atovmyan, G. V. Shilov, N. S. Ovanesyan, A. A. Pyalling, R. N. Lyubovskaya, E. I. Zhilyaeva and Y. G. Morozov, *Synth. Met.,* 1995, **71**, 1809.
- 6 S. R. Batten, B. F. Hoskins and R. Robson, *J. Chem. Soc., Chem. Commun.,* 1991, 445; S. R. Batten, B. F. Hoskins and R. Robson, unpublished work.
- 7 S. R. Batten, B. Moubaraki, K. S. Murray and R. Robson, unpublished work.
- 8 H. Köhler, Z. Anorg. Allg. Chem., 1964, 331, 237.
- 9 M. Hvastijova, J. Kozisek, J. Kohout, L. Jäger and H. Fuess, *Transition Met. Chem.,* 1995, **20**, 276; M. Hvastijova, J. Kohout, J. Mrozinski and L. Jäger, Pol. J. Chem., 1995, 69, 852.
- 10 O. Kahn, *Molecular Magnetism,* VCH, New York, 1994, ch. 12, p. 287; *Adv. Inorg. Chem.,* 1995, **43**, 179.
- 11 P. Day, *Chem. Soc. Rev.,* 1993, 51 and references therein.

Received in Columbia, MO, USA, 7th October 1997; 7/07264C