Identification of the precursor of singlet oxygen $({}^{1}O_{2}, {}^{1}\Delta_{g})$ involved in the disproportionation of hydrogen peroxide catalyzed by calcium hydroxide

Véronique Nardello,^a Karlis Briviba,^b Helmut Sies^b and Jean-Marie Aubry^{*a}

^a Equipe de Recherches sur les Radicaux Libres et l'Oxygène Singulet, URA CNRS 351, Faculté de Pharmacie de Lille, BP 83, F-59006 Lille Cedex, France

^b Institut für Physiologische Chemie I, Heinrich-Heine-Universität Dusseldorf, Postfach 101007, D-40001 Düsseldorf, Germany

Catalytic disproportionation of hydrogen peroxide by calcium hydroxide generates singlet molecular oxygen ${}^{1}O_{2}$ $({}^{1}\Delta_{g})$ through the diperoxohydrate peroxide CaO₂·2H₂O₂ with a 50% yield based on the calcium peroxide.

Many inorganic compounds are known to induce the disproportionation of hydrogen peroxide into singlet oxygen (${}^{1}O_{2}$, ${}^{1}\Delta_{g}$).¹ Among them, calcium hydroxide appears both attractive for its environmental friendly feature and amazing on account of the simplicity of the catalyst involved [eqn. (1)].

$$2 \operatorname{H}_2 \operatorname{O}_2 \xrightarrow{\operatorname{Can}} 2 \operatorname{H}_2 \operatorname{O} + \alpha \operatorname{^1O}_2 + (1 - \alpha)$$
(1)

Although the formation of ${}^{1}O_{2}$ during reaction (1) has been established,¹ several points remain unclear: (*i*) the traps of ${}^{1}O_{2}$ bore carboxylate functions which precipitated partially in presence of the calcium salts, (*ii*) the calcium hydroxide did not have the highest purity commercially available, (*iii*) the influence of the main parameters on the reaction were not studied, (*iv*) no information was provided with regard to the nature of the precursor of ${}^{1}O_{2}$. Therefore, the system H₂O₂/Ca^{II} has been reinvestigated by resorting to two complementary techniques: the detection of the IR luminescence of ${}^{1}O_{2}$ at 1270 nm and the chemical trapping with a more suitable trap. In a second step, the nature of the precursor and the yield of ${}^{1}O_{2}$ were determined.

The monomol emission of ${}^{1}O_{2}$ was detected with a liquidnitrogen cooled germanium diode equipped with a bandpass filter for 1270 ± 10 nm.² The assays were carried out in a thermostated cell at 50 °C filled with an aqueous (H₂O or D₂O) solution of H₂O₂ (1.0 M). After recording the baseline, solid CaO (0.2 M) of high purity (99.995%) was added and the photoemission of ${}^{1}O_{2}$ was monitored. The maximum values of the luminescence intensy $I_{\rm p}$ are reported in Table 1.

The luminescence intensity I_p was found to be strongly dependent on the deuteration of the solvent (Table 1, entries 1 and 2) as a ten-fold increase was observed in deuterated water (95%), in good agreement with the longer lifetime of ${}^{1}O_{2}$ in D₂O than in H₂O.³ In a control experiment (Table 1, entry 3), it

Table 1 Experimental conditions and emission intensity $I_{\rm p}$ of ${}^1{\rm O}_2$ luminescence^a

Entry	Calcium compound	[H ₂ O ₂]/ mmol	[NaOH]/ mmol	Solvent	<i>I</i> _p /mV
1	CaO	5.0	_	H ₂ O	0.4 ± 0.1
2	CaO	5.0	_	$\tilde{D_2O}$	4.4 ± 0.5
3		5.0	2.0	D_2O	No signal
4	CaO2.8H2O		_	$\tilde{D_2O}$	0.3 ± 0.1
				CD ₃ OD	0.5 ± 0.1
5	CaO2·2H2O2		_	D_2O	10 ± 0.5
				CD ₃ OD	98 ± 2

 a Experiments were carried out with 1.0 mmol of calcium compounds at 50 °C in 5 ml of solvent.

was shown that the disproportionation of H_2O_2 (1 M) induced by NaOH (0.4 M) did not provide any detectable signal in contrast with the finding of Smith and Kulig.⁴ Accordingly, ${}^{1}O_2$ arises from the interaction between Ca^{II} and H_2O_2 and not from the base-catalyzed disproportionation of H_2O_2 .

The detection of ¹O₂ via its IR luminescence requires a relatively high steady-state concentration of 1O2.5 Thus, experiments with the system H_2O_2/Ca^{II} were carried out in D_2O_2/Ca^{II} and with gentle warming (50 °C). On the other hand, specific chemical trapping worked in ordinary water, at room temperature, and was found to be more reliable for the quantification of ¹O₂ than the spectral method. The new cationic watersoluble trap. 9,10-bis(4-trimethylphenylammonium) anthracene dichloride (BPAA), which efficiently reacts with ¹O₂ giving a specific endoperoxide BPAAO₂ as the sole product,⁶ was particularly suitable for these trapping experiments since it did not interfere with the catalytic reaction as the tetrapotassium rubrene-2,3,8,9-tetracarboxylate (RTC) did.¹ In presence of BPAA, ${}^{1}O_{2}$ arising from reaction (1) can either be quenched by water [eqn. (2)] and by BPAA [eqn. (3)] or react with this trap [eqn. (4)].7

$$^{1}O_{2} \xrightarrow{k_{d}} {}^{3}O_{2}$$
 (2)

$$BPAA + {}^{1}O_2 \longrightarrow BPAA + {}^{3}O_2$$
(3)

Under pseudo-stationary conditions $(d[^{1}O_{2}]/dt = 0)$, processes (1)–(4) lead to eqn. (5) giving the rate of the disappearance of BPAA:

$$\frac{\mathrm{d[BPAA]}}{\mathrm{d}t} = -\nu(^{1}\mathrm{O}_{2})\frac{k_{\mathrm{r}}[\mathrm{BPAA}]}{k_{\mathrm{d}} + (k_{\mathrm{r}} + k_{\mathrm{q}})[\mathrm{BPAA}]}$$
(5)

where $v(^{1}O_{2})$ is the rate of $^{1}O_{2}$ generation from reaction (1).

The concentration of BPAA used was very low (10^{-4} M) in order to minimize the disturbance of the process under study. Under these conditions, the quenching of ${}^{1}O_{2}$ by water is the main pathway for ${}^{1}O_{2}$ decay. Thus, $k_{d} \gg (k_{r} + k_{q})$ [BPAA] and eqn. (5) reduces to eqn. (6) which allows calculation of $v({}^{1}O_{2})$ from the initial rate of BPAA disappearance, d[BPAA]/dt:

$$v({}^{1}O_{2}) = -\frac{d[BPAA]}{dt} \frac{k_{d}}{k_{*}[BPAA]}$$
(6)

In control experiments, it was shown that the oxidation of BPAA (10 mM) gives the expected endoperoxide BPAAO₂ identified by ¹H and ¹³C NMR spectroscopy.⁶ Accordingly, the

Chem. Commun., 1998 599

Fig. 1 ${}^{1}O_{2}$ formation as a function of [H₂O₂] detected by chemical trapping (\bigcirc) (200 mM CaO, 0.1 mM BPAA, H₂O, 25 °C) or by IR luminescence at 1270 nm ($\textcircled{\bullet}$) (same conditions except D₂O, 50 °C)

disappearance of BPAA could be confidently assigned to an oxidation through ${}^{1}O_{2}$. It was also shown that 50 mM CaO was able to disproportionate 500 mM H₂O₂ indicating that the Ca^{II} involved in process (1) acts as a catalyst. It is noteworthy that, whereas no H₂O₂ could be detected in the aqueous phase at the end of the reaction, the precipitate was found to contain exactly one peroxide group per Ca^{II} whatever the starting concentrations of H₂O₂ and CaO were. The final product is then probably the hydrated calcium monoperoxide CaO₂·8H₂O which is known to be stable in water.^{8,9} The rate of ${}^{1}O_{2}$ formation was measured for various initial concentrations of H₂O₂ (Fig. 1).

This figure shows that the formation of ${}^{1}O_{2}$ requires at least 1 equiv. of $H_{2}O_{2}$. The reaction rate increases steeply at first and then moderately when the concentration of $H_{2}O_{2}$ is increased suggesting that the main precursor of ${}^{1}O_{2}$ is probably the calcium complex which bears the highest number of peroxo groups. It is noteworthy that chemical trapping and detection of the luminescence provided similar results since a mere standardization allowed the fitting of both curves.

Although numerous calcium peroxides are reported in the literature,^{8–10} Karelin et al. have recently established that only two well defined compounds may be obtained by reaction of H₂O₂ with CaO in aqueous solution. The first is the stable octahydrate peroxide CaO₂·8H₂O and the other is the unstable diperoxohydrate peroxide CaO2·2H2O2 which decomposes spontaneously releasing oxygen.¹⁰ Up to now, no report has dealt with the multiplicity of the oxygen. We looked for the possible 1O2 luminescence emitted by thermolysis at 50 °C of the calcium peroxides $CaO_2 \cdot 8H_2O$ and $CaO_2 \cdot 2H_2O_2$ dispersed in deuterated methanol and water (Table 1). Deuterated solvents were preferred to take advantage of the longer lifetime of ¹O₂ which provides an enhanced intensity of the luminescence. CaO₂·8H₂O did not emit any significant luminescence (Table 1, entry 4) whereas a similar amount of CaO2.2H2O2 emitted a huge signal (98 \pm 2 mV) in CD₃OD. In D₂O, the signal was significant but lower probably owing to hydrolysis of the

complex as for the peroxomolybdates.¹¹ Accordingly, we can assert that $CaO_2 \cdot 2H_2O_2$ is a precursor of ${}^{1}O_2$. A catalytic scheme may be drawn from this conclusion (Scheme 1).

In a first step, Ca(OH)₂ is converted into CaO₂·8H₂O which binds two molecules of H₂O₂ giving CaO₂·2H₂O₂. On thermolysis at moderate temperature, this latter peroxide splits up into ¹O₂ and CaO₂·8H₂O. This catalytic cycle would operate until complete disproportionation of H₂O₂ and would leave CaO₂·8H₂O as a final product.

In order to assess the efficiency of $CaO_2 \cdot 2H_2O_2$ to generate ${}^{1}O_2$, the oxidation of 250 mM α -terpinene was performed by warming at 50 °C a suspension of 400 mM $CaO_2 \cdot 2H_2O_2$ in CD_3OD . α -Terpinene is known to trap efficiently all the ${}^{1}O_2$ released giving mainly ascaridol. 12 1H NMR analysis of the reaction mixture showed that, under these conditions, $CaO_2 \cdot 2H_2O_2$ converts 85% of α -terpinene into ascaridol providing a yield of ${}^{1}O_2$ formation equal to 50 ± 3% based on this calcium peroxide.

This work was supported by the CNRS (program 'Catalysis and catalysts for industry and environment').

Notes and References

* E-mail: jmaubry@phare.univ-lille2.fr

- 1 J. M. Aubry, J. Am. Chem. Soc., 1985, 107, 5844.
- 2 P. Di Mascio and H. Sies, J. Am. Chem. Soc., 1989, 111, 2909.
- 3 A. A. Gorman and M. A. J. Rodgers, *Singlet Oxygen, in Handbook of Organic Photochemistry*, ed. J. C. Scaiano, CRC Press, Boca Raton, 1989, vol. 2, pp. 229–247.
- 4 L. L. Smith and M. J. Kulig, J. Am. Chem. Soc., 1976, 98, 1027.
- 5 K. Böhme and H.-D. Brauer, Inorg. Chem., 1992, 31, 3468.
- 6 V. Nardello and J. M. Aubry, Tetrahedron Lett., 1997, 38, 7361.
- 7 F. Wilkinson and J. G. Brummer, J. Phys. Chem. Ref. Data, 1995, 24, 663.
- 8 I. I. Vol'nov, in *Peroxides, Superoxides and Ozonides of Alkali-Earth Metals*, ed. A. W. Petrocelli, Plenum, New York, 1966.
- 9 N. G. Vannerberg, Prog. Inorg. Chem., 1962, 4, 125.
- 10 A. I. Karelin, D. G. Lemesheva and N. F. Gladyshev, *Russ. J. Inorg. Chem.*, 1995, 40, 371.
- 11 V. Nardello, J. Marko, G. Vermeersch and J. M. Aubry, *Inorg. Chem.*, 1995, **34**, 4950.
- 12 J. M. Aubry, B. Mandard-Cazin, M. Rougee and R. V. Bensasson, J. Am. Chem. Soc., 1995, **117**, 9159.

Received in Liverpool, UK, 12th November 1997; 7/08161H