Electrochemical dehydrodimerisation of a vinylenylamide ligand: formation of the binuclear group {Mo=N+CH=CHCH=CHCH=CHN+=Mo} which displays very strong electronic coupling in the { $(Mo^{III})-(Mo^{IV})$ } mixed-valence state

Yatimah Alias,^a Marie-Laurence Abasq,^{a,b} Frédéric Barrière,^{a,b} Sian C. Davies,^a Shirley A. Fairhurst,^a David L. Hughes,^a Saad K. Ibrahim,^a Jean Talarmin^b and Christopher J. Pickett^{*a}[†]

^a The Nitrogen Fixation Laboratory, John Innes Centre, Norwich Research Park, Colney, Norwich, UK NR4 7UH ^b UMR CNRS 6521, Faculté des Sciences, Université de Bretagne Occidentale, BP 809, 29285 Brest, France

Electrochemical dehydrodimerisation of an {Mogroup gives all-trans-N=CHCH=CH₂} an {=N+CH=CHCH=CHN+=} ligand, bridging two Mo^{IV} centres; the {(Mo^{III})-bridge-(Mo^{IV})} mixed-valence state is accessible by electrochemical reduction and exhibits very strong electronic coupling over the 11.7 Å which separates the two metal centres; this accords with EHMO calculations which show that the SOMO has substantial (30%) bridging-ligand character; in its capacity to function as a molecular wire linking two metal centres, the eight-atom hexatriene di(imide) chain {N(CH)₆N} compares favourably with C₈ chains of acetylenic carbons bridging other metal centres.

An extensive and diverse chemistry of enylamide ligands $(-N=CR_2; R = H \text{ or organic group})$ is developing, particularly at molybdenum(II) centres.¹ For example, recently it has been shown that incipient carbanionic character at the γ -carbon atom within the {Mo-N=CHCH=CH_2} group allows regio- and stereo-specific addition of carbon electrophiles.² We now report a new reaction of this vinylenylamide group: anodic dehydrodimerisation to give the hitherto unknown {=N+CH=CHCH=CHCN+=} bridging ligand.

Controlled potential oxidation of *trans*-[MoCl(N=CHCH= CH₂)(dppe)₂] **1** {dppe = Ph₂PCH₂CH₂PPh₂; vitreous carbon; -0.55 V vs. ferrocenium–ferrocene (Fc⁺–Fc); 0.2 M [NBu₄]-[BF₄] in tetrahydrofuran(thf)–KOBu^t (2 equiv.)} gives all-*trans*-[Cl(dppe)₂Mo=NCH=CHCH=CHCH=CHN=MoCl-(dppe)₂]²⁺ **2**²⁺ in an overall two-electron process, Scheme 1.

Cation 2^{2+} is formed in *ca*. 70% yield and was isolated from the anolyte as the tetrafluoroborate salt. Recrystallisation from CH₂Cl₂–EtO₂ gave $2[BF_4]_2$ -solvent as dark-orange plates and the structure was determined by X-ray crystallography.[‡] This

Scheme 1

established that the alternate-hydrocarbon bridge has the alltrans arrangement as shown in Fig. 1. The trans-Cl-Mo-N arrangement at each Mo atom, and the dimensions about the metal atoms, are similar to those found in the molybdenum(IV) methylimide cation trans-[MoCl(NMe)(dppe)₂]+ 3^{+} .³

The bridging ligand, which places the two Mo atoms 11.7 Å apart, is unique in that a polyene unit is linked to the metal centres by multiply bonding imide groups. The electronic consequences of this arrangement are considerable. EHMO calcualtions⁴ indicate that the LUMO of 2^{2+} has both metal (30%, 30%) and bridging-ligand π^* -character (30%).§ Populating this delocalised orbital by one-electron reduction leads to strong electronic coupling between the metal centres in the mixed-valence ion 2^+ (Robin and Day, Class III behaviour⁵) as is borne out by the following experimental evidence.

Cyclic voltammetry {vitreous carbon; 0.2 M [NBu₄][BF₄]– CH₂Cl₂} shows that 2^{2+} undergoes two successive reversible one-electron reductions with $\Delta E^{\circ} = 320$ mV ($K_{\rm com} = 2.6 \times 10^5$) which is indicative of Class II or Class III behaviour, Fig. 2.

Controlled potential electrolysis {vitreous carbon; -1.35 V vs. Fc⁺–Fc; 0.2 M [NBu₄][BF₄]–CH₂Cl₂} cleanly generates **2**⁺ as a stable, paramagnetic solution species (S = 1/2; $g_{\perp} = 1.998$, $g_{\parallel} = 1.960$; frozen glass, 77 K). The electronic spectrum of electrogenerated **2**⁺ shows an intense symmetric intervalence charge-transfer (IT) band in the near-IR at 12 820 cm⁻¹ which is absent in **2**²⁺.

The IT band-width at half-peak intensity $(\Delta v_{1/2})$ can be calculated for Class II systems from v_{max} using the Hush equation.⁶ This gives $\Delta v_{1/2}$ (calc.) = 5442 cm⁻¹ whereas $\Delta v_{1/2}$ (exptl.) = 702 cm⁻¹: IT bands which are considerably sharper than predicted typify Class III character. The intensity of IT bands in Class II complexes are weak with ε_{max} typically in the order of 10^2 dm³ mol⁻¹ cm⁻¹; in addition v_{max} is solvent dependent. In contrast, Class III complexes display intense solvent-independent IT bands. **2**⁺ has $\varepsilon_{\text{max}} = 9.5 \times 10^4$

Fig. 1 View of cation $[{MoCl(dppe)_2}_2{\mu-N(CH=CH-)_3N}]^{2+}$; the two halves are related by a centre of symmetry. Selected molecular dimensions: Mo–Cl 2.521(4), Mo–N 1.752(11), mean Mo–P 2.551(7) Å; Mo–N–C 178.0(10)°.

Chem. Commun., 1998 675

Fig. 2 Cyclic voltammogram at 293 K of 2^{2+} at vitreous carbon electrode in 0.2 M [NBu₄][BF₄]–CH₂Cl₂ at a scan rate of 30 mV s⁻¹ showing two successive reversible one-electron reductions. Electrode area = 0.0707 cm²; concentration of complex = 0.26 mM.

dm³ mol⁻¹ cm⁻¹ and v_{max} is solvent independent, again consistent with Class III assignment.

The crystallographic distance between the metal centres, v_{max} and $\Delta v_{1/2}$ can be used to estimate the degree of delocalisation (α^2) in the ground state of a mixed-valence system.⁶ For **2**⁺, α^2 is 0.25 which compares favourably with $\alpha^2 = 0.26$ for the Class III system [(η^5 -C₅Me₅)(dppe)Fe–C=CC=CC=CC=C-Fe(η^5 -C₅Me₅)(dppe)]⁺; this cation also has eight atoms separating the metal centres which are described as functioning as a 'molecular wire'.⁷

We thank the University of Malaya for providing a scholarship (to Y. A.); the Ministère de l'Enseignement Supérieur et de la Recherche for providing scholarships (to M. L. A. and F. B.); and the BBSRC for support of this work.

Notes and References

† Pickett@bbsrc.ac.uk

[‡] Crystal structure analysis of [{MoCl(dppe)₂}₂{ μ -N(CH=CH-)₃N}]-[BF₄]₂·nCH₂Cl₂·mEt₂O.

Crystal data: C₁₁₀H₁₀₂B₂Cl₂F₈Mo₂N₂P₈·CH₂Cl₂·C₄H₁₀O, assuming *n* and *m* are each 1.0, *M* = 2295.3, triclinic, space group *B*I (equiv. to no. 2), *a* = 12.533(1), *b* = 14.733(2), *c* = 30.206(3) Å, *α* = 83.818(8), *β* = 94.801(8), *γ* = 83.150(8)°, *U* = 5479.0(9) Å³. *Z* = 2, *D_c* = 1.391 g cm⁻³, *F*(000) = 2360, *T* = 293 K, μ(Mo-Kα) = 5.1 cm⁻¹, λ(Mo-Kα) = 0.71069 Å.

Air-sensitive, thin, deep orange plate crystals. Preliminary photographic examination, then Enraf-Nonius CAD4 diffractometer (with monochromated radiation) for accurate cell parameters (25 reflections, $\theta = 10-11^{\circ}$) and diffraction intensities (5094 unique intensities (5094 unique reflections to $\theta_{\text{max}} = 20^{\circ}$; 2643 'observed' with $I > 2\sigma_i$).

Corrections applied for Lorentz-polarisation effects, crystal deterioration (*ca.* 14.3% overall), absorption (by semi-empirical ψ -scan methods) and to eliminate negative net intensities (by Bayesian statistical methods). Structure determined by automated Patterson routines; refinement by full-matrix least-squares methods, on F^2 values, in SHELXL.⁸ In the cation, non-hydrogen atoms refined anisotropically, hydrogen atoms included with all parameters riding. Anion and solvent regions show disorder and not fully resolved. At conclusion of refinement, $wR_2 = 0.182$ and $R_1 = 0.101^8$ for 3881 reflections (with $I > \sigma_I$) weighted $w = [\sigma^2(F_o^2) + (0.0964P)^2]^{-1}$ with $P = (F_o^2 + 2F_c^2)/3$; for the 'observed' data, $R_I = 0.068$. In the final difference map, the highest peaks (*ca.* 0.67 e Å⁻³) were close to the Mo centres. CCDC 182/766.

§ EHMO calculations⁴ reveal that in 2^{2+} a degenerate pair of occupied orbitals constitute two metal-based HOMOs each with 93% Mo character. Consistent with this, cyclic voltammetry (vitreous carbon; 0.2 M [NBu₄][BF₄]–CH₂Cl₂) shows that 2^{2+} undergoes two successive and closely spaced ($\Delta E^{\circ} = 100 \text{ mV}$) reversible one-electron oxidations indicative of a valence-trapped {Mo^V(bridge)Mo^{IV}} system.

- D. L. Hughes, M. Y. Mohammed and C. J. Pickett, J. Chem. Soc., Chem. Commun., 1989, 1399; A. Hills, D. L. Hughes, C. J. Macdonald, M. Y. Mohammed and C. J. Pickett, J. Chem. Soc., Dalton Trans., 1991, 121; D. L. Hughes, S. K. Ibrahim, C. J. Macdonald, H. Moh'd Ali and C. J. Pickett, J. Chem. Soc., Chem. Commun., 1992, 1762; R. A. Henderson, S. K. Ibrahim and C. J. Pickett, J. Chem. Soc., Chem. Commun., 1993, 392; D. L. Hughes, S. K. Ibrahim, H. Moh'd Ali and C. J. Pickett, J. Chem. Soc., Chem. Commun., 1994, 425; Y. Alias, S. K. Ibrahim, M. A. Queiros, A. Fonseca, J. Talarmin, F. Volant and C. J. Pickett, J. Chem. Soc., Dalton Trans., 1997, 4807.
- 2 S. A. Fairhurst, D. L. Hughes, S. K. Ibrahim, M.-L. Abasq, J. Talarmin, M. A. Queiros, A. Fonseca and C. J. Pickett, *J. Chem. Soc., Dalton Trans.*, 1995, 1873.
- 3 D. L. Hughes, D. L. Lowe, M. Y. Mohammed, N. M. Pinhal and C. J. Pickett, J. Chem. Soc., Dalton Trans., 1990, 2021.
- 4 J. M. Ammeter, H. Bürgi, J. C. Thibeault and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 3686; C. Mealli and D. Proserpio, J. Chem. Educ., 1990, 67, 399.
- 5 M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem., 1967, 10, 247.
- 6 N. S. Hush, Prog. Inorg. Chem., 1967, 8, 391; 1984, 23, 3002; R. J. Crutchely, Adv. Inorg. Chem., 1994, 41, 273.
- 7 F. Coat and C. Lapinte, Organometallics, 1996, 15, 478.
- 8 G. M. Sheldrick, SHELX L—Program for crystal structure refinement, University of Göttingen, Germany, 1993.

Received in Cambridge, UK, 15th January 1998; 8/00419F