Rb2Au6Sb4S10: a novel sulfosalt with two different interpenetrating anionic frameworks: $[Au_3Sb_4S_8]$ ⁻ and $[Au_3S_2]$ ⁻

Jason A. Hanko and Mercouri G. Kanatzidis*†

Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824, USA

The layered compound $Rb_2Au_6Sb_4S_{10}$ consisting of two **interpenetrating** $[Au_3Sb_4S_8]$ and $[Au_3S_2]$ frameworks was **prepared from the reaction of Au with a polythioantimonate flux.**

Polychalcoantimonate fluxes can be used for the synthesis of new ternary and quaternary thioantimonate and selenoantimonate compounds.^{1–4} This method is complementary to conventional direct combination of the binary sulfides⁵ or hydro(solvento)thermal synthesis.⁶ The polychalcoantimonate fluxes are formed by the *in situ* fusion of $A_2\dot{Q}/Sb/Q$ and contain $[Sb_xQ_y]$ ^{*n*-} ligands (A = Na, K, Rb, Cs; Q = S, Se) as well as polychalcogenide ligands. The key feature of this method is that the polychalcoantimonate units form and coordinate to metal ions to build up extended lattices. Examples include A_2AgSbS_4 $(A = K, Rb, Cs),$ ^{3,4} Cs₃Ag₂Sb₃Q₈ (Q = S, Se),^{3,4} KThSb₂Se₆,² A_2 AuSbS₄ (A = Rb, Cs)^{3b} and KHgSbS₃.⁷ Continuing our investigations of the coinage metals, particularly Au, we report here, the synthesis, structural characterization, and physical properties of a novel quaternary gold thioantimonate compound, $Rb_2Au_6Sb_4S_{10}$: The novelty in this two-dimensional compound derives from the fact that its layers are comprised of two different and independent interwoven frameworks. The only other structurally characterized example of two interpenetrating frameworks is K_2PdSe_{10} .⁸

The strikingly complex structure of $Rb_2Au_6Sb_4S_{10}$ § is composed of two different interpenetrating layered frameworks, $[Au_3Sb_4S_8]$ ⁻ and $[Au_3S_2]$ ⁻, Fig. 1. As a result, $Rb_2[Au_3Sb_4$ - S_8 [Au_3S_2] is a more descriptive formula, and to the best of our knowledge, represents the first reported example of a compound in which a binary framework is interpenetrating with a ternary one. The $[Au_3Sb_4S_8]$ ⁻ layer is strongly undulating and consists of infinite $[Sb_4S_7]^2$ ⁻ one-dimensional chains bound to $[Au_3S]^+$ units. The $[Sb_4S_7]^{2-}$ chain [Fig. 2(*a*)] is comprised of four condensed $SbS₃$ pyramids forming a twelve membered $Sb-S$ ring. Two of the $SbS₃$ units share two corners leaving one terminal sulfide while the other two $SbS₃$ units share all three corners. The dimensions of the ring are $6.49(3)$ Å $[Sb(4)-Sb(2)]$ by 7.83(3) \AA [Sb(1)–Sb(3)]. The chains alternate above and below the layer in a staggered fashion [Fig. 2(*b*)]. The Sb atoms are in pyramidal coordination with Sb–S distances in the range from $2.21(6)$ to $2.65(6)$ Å [mean $2.46(3)$ Å] and compare well with those reported for $Cs_2Sb_4S_8^1$ and $Cs_3Ag_2Sb_3S_8^3$.^{3,4} The discrete $[Au_3\hat{S}]^+$ unit has a pyramidal sulfide linked to three linear Au⁺ cations. The Au–S distances range from 2.28(4) to 2.46(5) Å and compare well with those found in $CsAu₃S₂,^{9a}$ AAuS^{9b} (A = Na, K, Rb, Cs), KAuS₅¹⁰ and AAuSbS₄³ $(A = Rb, Cs)$. The S-Au-S angles range from 170 to 174°.

The second framework, which is interwoven with the one described above is a $[Au_3S_2]$ ⁻ layer. The $[Au_3S_2]$ ⁻ layer is puckered with twelve-membered Au–S rings in an $anti-B₂O₃$ motif {ring dimensions: $6.91(2)$ Å [Au(4) \cdots Au(4)] by 7.19(3) Å $[Au(3)\cdots Au(3)]$. Fig. 3(*a*) highlights the pyramidal sulfide and the puckered nature of the layer and Fig. 3(*b*) shows a perpendicular view. The Au–S distances are in the range from $2.25(4)$ to 2.46(5) Å and the S–Au–S angles range from 165 to 178°. The $[Au_3S_2]$ ⁻ layered structure is similar but not identical to that observed in $CsAu₃S₂.^{9a}$

Upon further inspection, it was observed that the Au+ centers in $Rb_2Au_6Sb_4S_{10}$ aggregate to form a column that runs along the *c*-axis. There are two types of Au···Au interactions: those at ≤ 3.25 Å and those between 3.25 and 3.6 Å. Fig. 3(*c*) shows a view perpendicular to these Au-based columns. In Fig. 3(*c*) the interactions ≤ 3.25 Å are represented as solid lines while the Au \cdots Au interactions between 3.25 and 3.60 Å are represented as dashed lines. The layers are separated by ten-coordinate $Rb(1)$ ⁺ [Rb(1)–S (mean) 3.59(3) Å] and eight-coordinate Rb(2) $[Rb(2)$ + [Rb(2)–S (mean) 3.50(3) Å].

The optical spectrum of $Rb_2Au_6Sb_4S_{10}$ reveals the presence of a sharp optical gap of 1.37 eV, suggesting the material is a semiconductor.

The far-IR spectrum of $Rb_2Au_6Sb_4S_{10}$ displays absorptions at *ca*. 377 and 350 cm^{-1} which can be tentatively assigned to Sb–S stretching modes in the 'Sb₂S₄'-like backbone of the $[Au_3Sb_4S_8]$ ⁻ framework.^{1,3} Absorptions in the range 381–347 $cm⁻¹$ are tentatively assigned to the Sb–S vibrational stretching modes by analogy with the $Cs_2Sb_4S_8^1$ and $Cs_3Ag_2Sb_3S_8^3$ Absorptions below 347 $cm⁻¹$ are assigned to Au–S vibrations as compared to Rb_2AuSbS_4 .³ By comparison with $KAuS_5$ the absorption at *ca*. 323 cm^{-1} is assigned as an Au–S stretching vibration.¹⁰ The Raman spectrum¶ of $Rb_2Au_6Sb_4S_{10}$ displays absorptions in the range $377-350$ cm⁻¹ which are assigned to

Fig. 1 Structure of Rb₂Au₆Sb₄S₁₀ viewed down the *c*-axis. Selected distances (\AA) and angles (\degree) with esds in parentheses: Au(1)–S(3) 2.32(1), Sb(1)–S(6) 2.43(2), Au(1)–S(5) 2.30(1), Sb(1)–S(8) 2.47(1) (\times 2), Au(2)– S(2) 2.28(2), Sb(2)–S(5) 2.54(2), Au(2)–S(4) 2.30(2), Sb(2)–S(1) 2.48(1) $(\times 2)$, Au(3)–S(3) 2.32(1), Sb(3)–S(6) 2.58(2), Au(3)–S(7) 2.31(1), Sb(3)– S(1) 2.48(1) (\times 2), Au(4)–S(3) 2.29(2), Sb(4)–S(4) 2.40(2), Au(4)–S(7) 2.30(2), Sb(4)–S(8) 2.47(1) $(\times 2)$, Au(1)–Au(3) 3.192(3), Au(1)–Sb(1) 3.393(5), Au(1)–Au(4) 3.060(4), Au(1)–Sb(3) 3.233(5), Au(2)–Au(4) $3.593(1)$, Au(2)–Sb(2) $3.091(6)$, Au(1)–Au(1') $3.588(4)$, Au(2)–Au(3) $3.389(4)$, Au(3)–Au(3') $3.461(5)$, Au(3)–Au(4) $3.558(3)$; S(2)–Au(1)–S(5) $170.9(7)$, $S(1)$ –Sb(3)–S(1') 89.4(7), $S(2)$ –Au(2)–S(4) 173.9(8), $S(1)$ –Sb(3)–S(6) 95.6(5), S(3)–Au(3)–S(7) 178.4(7), S(1')–Sb(3)–S(6) 95.6(5), S(3)–Au(4)–S(7) 170.0(8).

Fig. 2 (*a*) ORTEP view of the $[Sb_4S_7]^{2-}$ chain with labelling; (*b*) ORTEP view of the complete $[Au_3Sb_4S_8]$ ⁻ framework with labelling

Fig. 3 (*a*) ORTEP view of the $[Au_3S_2]$ ⁻ layer highlighting the pyramidal sulfides in the undulating layer; (b) perpendicular view of the $[Au_3S_2]$ ⁻ layer with labelling; (*c*) Au···Au interactions of the Au column

Sb–S modes and the absorptions below 350 cm^{-1} are assigned to Au–S stretching vibrations.

DTA data, followed by careful XRD analysis of the residues, show that $Rb_2Au_6Sb_4S_{10}$ melts incongruently at *ca*. 442 °C. Examination of the residue by powder XRD revealed that the compound decomposes to an amorphous material and Au metal.

In conclusion, $Rb_2Au_6Sb_4S_{10}$ represents the first example of a sulfosalt with two different interpenetrating anionic frame-

works. Although one of the frameworks $[Au_3S_2]$ ⁻ can exist by itself, efforts to isolate the second framework alone are in progress.

Financial support from the National Science Foundation DMR-9527347 is gratefully acknowledged. M. G. K. is an A. P. Sloan Foundation, and a Camille and Henry Dreyfus Teacher Scholar 1993–98. The authors are grateful to the X-ray Crystallography Laboratory of the University of Minnesota and to Dr Victor G. Young, Jr. for collecting the single crystal X-ray data set. This work made use of the SEM facilities of the Center for Electron Optics at Michigan State University.

Notes and References

† E-mail: kanatzid@argus.cem.msu.edu

 \ddagger Rb₂Au₆Sb₄S₁₀ was synthesized from a mixture of Rb₂S (0.102 g, 0.5) mmol), Au (0.098 g, 0.5 mmol), Sb (0.031 g, 0.25 mmol) and S (0.064 g, 2 mmol) sealed under vacuum in a Pyrex tube and heated to 350 °C for 4 days followed by cooling to 150 °C at 4° C h⁻¹. The excess Rb_x [Sb_yS_z] flux was removed by washing with DMF to reveal analytically pure black needles in low yield (20% yield based on Sb). The crystals are air- and water-stable. Microprobe analysis carried out on several randomly selected crystals gave an average composition of $RbAu_{4.6}Sb_{2.7}S_9$. This technique tends to underestimate the amount of Rb.

§ *Crystallography*: A Siemens SMART Platform CCD diffractometer equipped with Mo-K α was used for a crystal of $0.400 \times 0.010 \times 0.005$ mm. An empirical radiation ($\lambda = 0.71073$ Å) absorption correction was applied to the data during data processing. *Crystal data* at -120 $a = 12.4402(2)$, $b = 26.0790(4)$, $c = 6.9614(1)$ Å, $U = 2258.3(7)$ Å³, $Z = 4, D_c = 4.043$ g cm⁻³, space group *Pnnm* (no. 63), $\mu = 48.83$ cm⁻¹, index ranges $-14 \le h \le 14$, $-31 \le k \le 28$, $-8 \le l \le 8$; total data 15609; unique data 2340 ($R_{\text{int}} = 0.146$), data with $F_o^2 > 3\sigma(F_o^2)$ 1181; no. of variables, 124; final *R*, $R_w = 0.080$, 0.096; GOF 2.66; max. peak in difference electron density map = 7.97 e⁻ Å⁻³. The structure was solved with SHELXS-86 and refined with the TEXSAN Structure Analysis Package (Molecular Structure Corporation, 1985) of crystallographic programs. CCDC 182/760.

¶ Far-IR (CsI matrix) gave absorptions at *ca*. 381w, *ca.* 359w (sh), 347m, $325m$, $306w$, $295w$, $270s$ and $233w$ cm⁻¹. Raman spectra (ground crystals) gave absorptions at *ca*. 377w, 350s, 323m, 285w, 266m and 250s cm⁻¹.

-
- 1 T. J. McCarthy and M. G. Kanatzidis, *Inorg. Chem.*, 1994, **33**, 1205. 2 K.-S. Choi, L. Iordanidis, K. Chondroudis and M. G. Kanatzidis, *Inorg. Chem.*, 1997, **36**, 3804.
- 3 (*a*) J. A. Hanko and M. G. Kanatzidis, Abstract No. 0413 from 210th Fall ACS Meeting, Chicago Il 1995; (*b*) J. A. Hanko and M. G. Kanatzidis, submitted.
- 4 P. T. Wood, G. L. Schimek and J. W. Kolis, *Chem. Mater.*, 1996, **8**, 721; G. L. Schimek, T. L. Pennigton, P. T. Wood and J. W. Kolis, *J. Solid State Chem.*, 1996, **123**, 272.
- 5 For example see: G. Cordier and H. Schäfer, Rev. Chem. Miner., 1981, **18**, 218; W. Dorrscheidt and H. Schäfer, Z. Naturforsch., Teil B, 1981, 36, 410; G. Cordier, C. Schwidetzky and H. Schäfer, Rev. Chem. Miner., 1982, **19**, 179.
- 6 W. Sheldrick and M. Wachhold, *Coord. Chem. Rev.,* in press; G. W. Drake and J. W. Kolis, *Coord. Chem. Rev.*, 1994, **137**, 131.
- 7 M. Imafuku, I. Nakai and K. Nagashima, *Mater. Res. Bull.*, 1986, **21**, 493.
- 8 K.-W. Kim and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 1992, **114**, 4878.
- 9 (*a*) K. O. Klepp and C. Weithhaler, *J. Alloys Compd.*, 1996, **243**; (*b*) K. O. Klepp and C. Weithhaler, *J. Alloys Compd.*, 1996, **243**, 12; (*c*) W. Bronger and H. U. Kathage, *J. Alloys Compd.*, 1992, **184**; 87; (*d*) K. O. Klepp and W. Bronger, *J. Less-Common Met.*, 1987, **127**, 65; (*e*) K. O. Klepp and W. Bronger, *J. Less-Common Met.*, 1987, **132**, 173; (*f*) K. O. Klepp and W. Bronger, *J. Less-Common Met.*, 1988, **137**, 13; (*g*) K. O. Klepp and G. Brunnbauer, *J. Alloys Compd.*, 1992, **183**, 252.
	-
- 10 Y. Park and M. G. Kanatzidis, *Angew. Chem., Eng. Ed. Engl.*, 1990, **29**, 914.

Received in Bloomington, IN, USA, 17th June 1997; 7/04254J