Highly efficient photometathesis in a proximate, synperiplanar diazene-diazene oxide substrate: retention of optical purity, mechanistic implications

Kai Exner and Horst Prinzbach*†

Institut fur Organische Chemie und Biochemie, Universit ¨ at Freiburg, Albertstr. 21, D-79104 Freiburg, Germany ¨

In a specifically designed proximate and almost perfectly synperiplanar diazene–diazene oxide substrate, metathesis is the exclusive photoreaction and occurs with retention of optical purity, providing support for the $[\pi 2 + \pi 2]$ **photocycloaddition pathway (tetrazetidine oxide intermediate).**

An intriguing discrepancy between rigid, proximate (*d*), synperiplanar (ω) dienes **A** ($\dot{X} = CR$) and bisdiazenes **A** ($\dot{X} = N$) is the contrasting propensity for $[\pi2 + \pi2]$ photocycloaddition $(A \rightarrow B)$.¹ The ease of N₂ extrusion is the main reason for the repeated failure to achieve diazene $+$ diazene \rightarrow tetrazetidine photocycloaddition [reaction (1)].2,3

We have recently reported that in the specifically designed very proximate and nearly synperiplanar bisdiazene **1** with its very favourable stereoelectronic prerequisites ($d = 2.822$ Å, ω) = 174.2°, X-ray), N₂ elimination still precludes the $[\pi 2 + \pi 2]$ photocycloaddition, but that some photometathesis of its oxide $2 \left(\rightarrow 3 \right)$ does occur (2%) [reaction (2)], most probably through the tetrazetidine oxide.⁴ Given the quantum yields Φ_{N_2} of 1.00 and 0.02, respectively, for the N_2 elimination from the parent 2,3-diazabicyclohept-2-ene (DBH) and 2,3-diazabicyclooct-2-ene (DBO),⁵ the cycloaddition (metathesis) of the isomeric oxide **4** with its oxidized DBH- and 'reluctant' DBO-subunits was expected to be more successful [reaction (3)]. The synthesis of 4 as a racemate and as the $(+)$ -enantiomer and the experimental verification of the above hypotheses are the subjects of this communication.⁶

obtained oxide rac-7 $[\lambda_{\text{max}} (CH_3CN)/nm$ 230 (ε /dm³ mol⁻¹ cm^{-1} 5980)] was then transformed into the diazene-diazene oxide 10 (mixture of diastereomers $[λ_{max} (CH₃CN)/nm$ 236 (ε 3340), 387 (82)] *via* dialdehyde **8** and dihydropyridazine **9** (mixture of trimers) following the procedure for the preparation of **1**. Yet, hydrogenation (catalytic, N_2H_2) of the cyclopentene ring in **10** could not be effected without partial deoxygenation $(\rightarrow 1)$. Typical for the rigid, colourless, crystalline *rac*-4, obtained in *ca.* 50% yield after chromatography and crystallisation (CHCl₃-n-hexane), are *inter alia* the small H,H coupling constants $(J_{1,2(1,13)} = J_{7,8(8,9)} = 1.6$ Hz) and the $m/z = 141$ fragment in the EIMS spectrum (3,4,4,5-tetramethyl- $4H$ -pyrazole 1-oxide + H⁺, 100%). In the UV spectra (CH₃CN) of $\overline{10}$ (4) the distinct N=NO π, π^* maxima at 237(236) nm [ϵ 3780(2340)] and the N=N n, π^* maxima at 387(387) nm ϵ 82(81)], when compared with the N=NO absorption of 7 and the n, π^* maximum for the parent DBO [$\lambda_{\text{max}}(n\text{-hexane})/\text{nm}$ 378 (ε 182)], can be taken as evidence for a weak transannular $N=N/$ $N=N$ ^o interaction. Note that **2** and **4**, upon heating to their melting temperature (260/264 °C), remained unchanged; there was no indication for their interconversion or for their common $[4 + 2]$ oxazolidine cycloadduct;⁷ at even higher temperatures neat N_2 elimination (2) or oligomerization (4) occurred.

In line with expectation n, π^* excitation (solidex vessel, CH₃OH, 150 W Hg high pressure lamp, 25 °C) for several hours left **4** unchanged; denitrogenation was obviously very much slower than in isomer 2. Monochromatic π, π^* excitation (254) nm, quartz vessel, CH₃OH, Hanau TNN 15 lamp, 25° C)

Since monooxidation of bisdiazene **1** had exclusively occurred in the DBO section to give **2**, the isomer **4** was prepared starting with **6**4 (Scheme 1). The quantitatively

Scheme 1 *Reagents and conditions*: i, (\pm) -7: DMDO, CH₂Cl₂–Me₂CO, rt, quant.; (+)-**7**: (+)-**11**, 14 kbar, 65 °C, 12 d, ethyl acetate, 75%, 92–95% ee; ii, 1 M H_2SO_4 , reflux, used as CH_2Cl_2 solution of the hydrate; N_2H_4 , 10 equiv., K₂CO₃, 100 equiv. CH₂Cl₂, 0 °C; iii, TFA (1 equiv.), cyclopentadiene (*ca*. 500 equiv.), CH₂Cl₂, 4 °C, 62%; iv, H₂/MeOH/Pd/C (10%), rt, 66%

Scheme 2 Photochemistry of (chiral) bisdiazene oxide **4** and its isomer **5** (254 nm low pressure Hg lamp, MeOH, rt)

generated, in up to *ca.* 10% conversion exclusively, the metathesis isomer **5** (TLC, NMR) which was chromatographically isolated as colourless crystals $[\lambda_{\text{max}} (CH_3CN)/nm]$ 239 (ε 5510, π,π^* N=NO), 346 (ε 172, n,π^* N=N)]. With increasing conversion, denitrogenation of **5** to give **15** (70–75% was isolated in the crystalline form) and oligomers (25–30%) became important (Scheme 2). By separate irradiation of **5** it was ascertained that **15** indeed was a secondary photoproduct. The skeletal changes in going from **4** to the more mobile **5** with the most stable calculated (B3LYP/6-31G*) conformation at $d_1 = 3.142$ and $d_2 = 2.950 \text{ Å}$ ($\omega = 161.4^{\circ}$) are manifested *inter alia* by the relatively large H,H coupling constants $J_{4,5} = 5.9$, $J_{4,15} = 6.4, J_{9,10} = 9.2, J_{10,14} = 7.0$ Hz and the hypsochromic displacement of the N=N n, π^* absorption.⁸

Of the two pathways shown in Scheme 2 for the metathesis **4** \rightarrow 5, the route featuring the C_s symmetrical 12 and 13 as intermediates could be put to experimental test with optically active **4**. After futile attempts to oxidize **6** enantioselectively using Sharpless⁹ and Jacobsen¹⁰ methods, with percamphanic acid¹¹ or the chiral oxaziridine 11 ,¹² the application of high pressure to the reaction of **6** with **11** brought the solution: chiral oxide **7** was isolated with 92–95% ee (Chiralcel AD, propan-2-ol–*n*-hexane 1:3). After standard synthesis of $(+)$ -4 and photolysis, the retention of the optical purity was established for $\overline{(-)}$ -15^{$\overline{5}$} (89–92% ee, Chiralcel AD, the enantiomers of 4 and 5 could not be sufficiently separated). Experiments for the lowtemperature (matrix) characterisation of the tetrazetidine oxide **14** as the most plausible intermediate are in progress.13

This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and BASF AG. We thank B. Geiser for technical assistance.

Notes and References

† E-mail: prinzbach@oca.chemie.uni-freiburg.de

1 Another fundamental difference is the readiness of these 'proximate' bisdiazenes to undergo one- and two-electron reduction with generation of so far unknown cyclically delocalised, highly persistent 4N/5e radical anions and 4N/6e dianions. K. Exner, O. Cullmann, D. Hunkler, H. Prinzbach, G. Gescheidt and V. Peron, unpublished results.

- 2 H. Prinzbach, G. Fischer, G. Rihs, G. Sedelmeier, E. Heilbronner and Z.-Z. Yang, *Tetrahedron Lett.,* 1982, **23**, 1251, *c.f.* E. Tauer and R. Machinek, *Liebigs Ann. Chem.,* 1996, 1213; E. Tauer, K.-H. Grellmann and A. Heinrich, *Chem. Ber.,* 1991, **124**, 2053; G. Ritter, G. Häfelinger, H. Rau and E. Lüdecke, J. Am. Chem. Soc., 1989, 111, 4627.
- 3 E. Beckmann, N. Bahr and H. Prinzbach, *Tetrahedron Lett.,* 1990, **31**, 1125.
- 4 K. Exner, D. Hochstrate, M. Keller, F.-G. Klärner and H. Prinzbach, *Angew. Chem., Int. Ed. Engl.,* 1996, **35**, 2256.
- 5 P. S. Engel, *Chem. Rev*., 1980, **80**, 99; M. A. Anderson and C. B. Grissom, *J. Am. Chem. Soc*., 1995, **117**, 5041 and references therein.
- 6 All compounds have been fully characterized (1H, 13C NMR, MS, UV, IR). *Selected data* for **4**: $\delta_H(CDCl_3, 400 MHz)$ 5.47 (dd, $J_{7,8} = J_{8,9} 1.6$, 8-H), 5.31 (dd, *J*1,2 = *J*1,13 1.6, 1-H), 2.35 (*A*BXY, *J*AB 10.4, 7-H), 2.27 (A*B*XY, *J*AB = 10.4, 2-H), 2.32–2.25 (dddd, 9-H), 2.23–2.15 (dddd, 13-H), 1.80–1.70 (m, 10a-H, 12a-H), 1.47 (s, 6-Me), 1.45–1.35 (m, 10s-H, 11a-H, 12s-H), 1.39 (s, 3-Me), 1.23–1.10 (m, 11s-H), 0.92 (s, 16s-Me), 0.72 (s, 16a-Me); $\delta_C(CDCl_3, 100.6 MHz)$ 91.0 (C-3), 75.6 (C-6), 64.0 (C-8), 63.6 (C-1), 59.8 (C-16), 48.3 (C-7), 44.6 (C-13), 43.7 (C-9), 43.3 (C-2), 30.2/29.9 (C-10, C-12), 26.2 (C-11), 17.4 (16-Me *anti*), 15.6 (16-Me *syn*), 12.1 (6-Me), 9.7 (3-Me); m/z (EI) 201 [M⁺ - $Me - N_2 - N_2O$] (5%), 141 [tetramethyl-4*H*-pyrazole *N*-oxide + H⁺] (100), 125 [tetramethyl-4H-pyrazole + H⁺] (26), 91 (39); $\lambda_{\text{max}}(\text{CH}_3\text{CN})$ nm 204 (ε /dm³ mol⁻¹ cm⁻¹ 4620), 237 (3780), 387 (81). v (KBr)/cm⁻¹ 1509 (NNO). *Selected data* for **5**: $\delta_H(CDCl_3, 400 MHz)$ 4.38 (dd, $J_{9,10}$) 9.2, *J*10,14 7.0, 10-H), 4.10 (dd, *J*4,5 5.9, *J*4,15 6.4, 4-H), 2.79–2.69 (dddd, 9-H), 2.58 (dd, *J*4,15 = 6.4, *J*14,15 10.4, 15-H), 2.45–2.35 (m, i. a. 5-H), 2.25–2.19 (m, 8-H), 2.15 (dd, *J*10,14 = 7.0, *J*14,15 10.4, 14-H), 2.11–1.96 (m, 2 H), 1.93–1.85 (m, 1 H), 1.84 (s, Me), 1.59–1.48 (m, 7-H), 1.40 (s, Me), 1.05 (s, Me), 1.02 (s, Me): $\delta_C(CDCl_3, 100.6 \text{ MHz})$ 105.4 (C-13), 98.5 (C-1), 86.5 (C-10), 65.7 (C-4), 49.3 (C-16), 45.4 (C-15), 41.0 (C-14), 37.2 (C-9), 36.7 (C-5), 31.5/30.1 (C-6, C-8), 26.1 (C-7), 25.2/17.2/16.9/15.0 (CH₃); m/z (EI) 288 [M⁺] (2%), 244 [M⁺-N₂O] (1), 216 $[M^+ - N_2 - N_2O]$ (28), 201 $[M^+ - N_2 - N_2O - Me]$ (100), 133 (60); λ_{max} (CH₃CN)/nm 239 (ε /dm³ mol⁻¹ cm⁻¹ 5510), 346 (172); v_{max} (KBr)/cm⁻¹ 1509 (NNO).
- 7 For related ene-diazene oxide cycloadditions see, G. Fischer, D. Hunkler and H. Prinzbach, *Tetrahedron Lett.*, 1984, 25, 2459; S. Hünig and M. Schmitt, *Liebigs Ann. Chem.,* 1995; 1801, and references therein.
- 8 N. Bahr, E. Beckmann, K. Mathauer, D. Hunkler, M. Keller, H. Prinzbach and H. Vahrenkamp, *Chem. Ber*., 1993, **126**, 429; O. Cullmann, Ph.D. Dissertation, University of Freiburg, 1998.
- 9 The modified procedure used to oxidize sulfides to sulfones was applied: P. Pitchen, E. Dunach, M.N. Deshmukh and H.B. Kagan, *J. Am. Chem. Soc.,* 1984, **106**, 8188.
- 10 E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker and L. Deng, *J. Am. Chem. Soc.,* 1991, **113**, 7063.
- 11 F. D. Greene and St. S. Hecht, *Tetrahedron Lett.,* 1969, **18**, 575.
- 12 F. A. Davis, M. C. Weismiller, C. K. Murphy, R. T. Reddy and B.-C. Chen, *J. Org. Chem*., 1992, **57**, 7274.
- 13 Together with M. Schweizer, J. Wirz (Basel), H.-P. Reisenauer and G. Maier (Gießen).

Received in Liverpool, UK, 23rd December 1997; 7/09232F