Ylide-like addition complexes in insertion reactions of $\mathbf{C H}$ with $\mathbf{P H}_{3}$ and $\mathbf{H}_{2} \mathbf{S}$

Z.-X. Wang and M.-B. Huang* \dagger
Graduate School at Beijing, University of Science and Technology of China, Academia Sinica, PO Box 3908, Beijing 100039, China

The intermediate addition complexes $\mathrm{HC}-\mathrm{PH}_{3}$ and $\mathrm{HC}-\mathrm{SH}_{2}$ formed in the CH insertion reactions with PH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ have large binding energies and short central bond lengths, exhibiting 'ylidic' features in their molecular and electronic structures.

We previously studied the CH insertion reactions with NH_{3}, $\mathrm{H}_{2} \mathrm{O}$ and HF by means of ab initio calculations ${ }^{1}$ and found intermediate addition complexes existing prior to the transition states in the reaction paths. The reaction paths for these reactions are illustrated by eqns. (4)-(6) where the reactants,

$$
\begin{array}{cc}
\underset{\text { ma }}{\mathrm{CH}}+\underset{\text { mb }}{\mathrm{XH}} \rightarrow \underset{\text { mc }}{\mathrm{HC}-\mathrm{XH}_{n}} \rightarrow \underset{\text { md }}{\mathrm{TS}} \rightarrow \mathrm{H}_{2} \mathrm{CXH}_{n-1} \\
(1) \mathrm{X}=\mathrm{P}, n=3 ; & (2) \mathrm{X}=\mathrm{S}, n=2 ; \\
\text { (4) } \mathrm{X}=\mathrm{N}, n=3 ; & (3) \mathrm{X}=\mathrm{CI}, n=1 \\
(5) \mathrm{X}=\mathrm{O}, n=2 ; & (6) \mathrm{X}=\mathrm{F}, n=1
\end{array}
$$

intermediate complexes ($\mathrm{HC}-\mathrm{XH}_{n}$), transition states (TS), and insertion products $\left(\mathrm{H}_{2} \mathrm{CXH}_{n-1}\right)$ are denoted as ma, mb, mc and md ($m=4,5$ or 6), respectively, and the energy profiles have the following skeletons: $E(\mathbf{m a})>E(\mathbf{m b})<E(\mathbf{m c}) \gg E$ (md).

Recently we performed $a b$ initio calculations for the CH insertion reactions with $\mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{~S}$ and HCl . These reactions have similar reaction paths [illustrated by eqns. (1)-(3), respectively] and similar skeletons of the energy profiles to those for reactions (4)-(6). However, we have found that the intermediate addition complexes $\mathrm{HC}-\mathrm{PH}_{3} \mathbf{1 b}$ and $\mathrm{HC}-\mathrm{SH}_{2} \mathbf{2 b}$
initially formed in reactions (1) and (2) are not the simple complexes, ${ }^{1}$ but are similar in nature to the phosphonium and sulfonium ylides (P - and S -ylides).

Standard ab initio molecular calculations were performed by using the Gaussian 94 W suite of programs. ${ }^{2}$ The structures of reactants, intermediate complexes, transition states, and products were optimized at the (U)MP2(FC)/6-31G(d) and (U)MP2(FC)/6-311++G(d,p) levels. Frequency calculations were carried out at the (U)MP2(FC)/6-31G(d) level to characterize stationary points and to evaluate zero-point energies (ZPEs). Finally single-point (U)MP4SDTQ(FC)/ $6-311++\mathrm{G}(2 \mathrm{~d}, \mathrm{p}) / /(\mathrm{U}) \mathrm{MP} 2(\mathrm{FC}) / 6-311++\mathrm{G}(\mathrm{d}, \mathrm{p}) \quad$ calculations were performed. For open-shell systems the $\left\langle S^{2}\right\rangle$ values are all <0.8. We recalculated the insertion paths for reactions (4)-(6) at these levels and obtained similar results to those reported in ref. 1. The MP4SDTQ/6-311++G(2d,p)//MP2/ $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ energetic results (the spin-projected ones for the open-shell systems) corrected with the (MP2/6-31G(d)) ZPEs and the MP2/6-311++G(d,p) geometrical results are used unless otherwise noted.
The potential energy curves in Fig. 1 represent the calculated insertion reaction paths for reactions (1)-(3). The relative energies of $\mathbf{m b}, \mathbf{m c}$ and $\mathbf{m d}$ and the structures of $\mathbf{~ m b}(m=1-3)$ are shown in Fig. 1. The term 'relative energy' (of a species) in the present article means the energy of a species relative to the reactants in the same reaction.
The binding energies of the intermediate addition complexes $\mathbf{1 b}, \mathbf{2 b}$ and $\mathbf{3 b}$ in reactions (1)-(3) are 43.4, 22.1 and 3.8 kcal $\mathrm{mol}^{-1}(1 \mathrm{cal}=4.184 \mathrm{~J})$ respectively. The negative relative

Fig. 1 A schematic diagram of the potential energy curves of the CH insertion reactions with $\mathrm{PH}_{3}(1), \mathrm{H}_{2} \mathrm{~S}$ (2) and HCl (3) with the MP4SDTQ/ $6-311++G(2 d, p) / / M P 2 / 6-311++G(d, p)$ relative energies in $\mathrm{kcal} \mathrm{mol}^{-1}[$ corrected with the MP2/6-31G(d) ZPEs] in parentheses. In the lower part of the figure are the MP2/6-311++G(d,p) structures of the intermediate addition complexes $\mathbf{m b}(m=1-3)$ formed in the three insertion reactions (bond lengths in \AA and angles in ${ }^{\circ}$).

Table 1 Binding energies $\left(E_{\mathrm{b}}\right)$ and the $\mathrm{C}-\mathrm{X}$ bond distances (R) of the addition complexes $\mathrm{HC}-\mathrm{XH}_{n}$

| | $\mathrm{HC}-\mathrm{PH}_{3}$
 $\mathbf{1 b}$ | $\mathrm{HC}-\mathrm{SH}_{2}$
 $\mathbf{2 b}$ | $\mathrm{HC}-\mathrm{ClH}$
 $\mathbf{3 b}$ | $\mathrm{HC}-\mathrm{NH}_{3}$
 $\mathbf{4 b}$ | $\mathrm{HC}-\mathrm{OH}_{2}$
 $\mathbf{5 b}$ | $\mathrm{HC}-\mathrm{FH}$
 $\mathbf{6 b}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $E_{\mathrm{b}} a / \mathrm{kcal} \mathrm{mol}{ }^{-1}$ | 43.4^{b} | 22.1^{b} | 3.8 | 24.9 | 7.9 | 1.5 |
| $R(\mathrm{C}-\mathrm{X})^{c} / \AA$ | 1.723 | 1.751 | 2.249 | 1.588 | 1.801 | 2.173 | |
| | | $(1.787)^{d}$ | (1.724) | (1.700) | (1.398) | (1.368) | (1.344) |

${ }^{a}$ The MP4SDTQ/6-311++G(2d,p)//MP2/6-311++G(d,p) + ZPE energetic results. ${ }^{b}$ After the (MP4) BSSE corrections, these two values (the E_{b} values for $\mathbf{1 b}$ and $\mathbf{2 b}$) are reduced by 3.4 and $3.4 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. ${ }^{c}$ Optimized at the MP2/6-311++G(d,p) level. ${ }^{d}$ Values in parentheses are the C-X bond lengths in the respective insertion products.

Table 2 Calculated properties of $\mathrm{HC}-\mathrm{PH}_{3}$ and $\mathrm{HC}-\mathrm{SH}_{2}$

	$E_{\mathrm{pt}}{ }^{a /}$ $\mathrm{kcal} \mathrm{mol}^{-1}$	$\Delta E^{a /}$ kcal mol	$\mathrm{H}-\mathrm{C}-\mathrm{X}^{b / \rho^{\circ}}$	$Q(\mathrm{C})^{b / \mathrm{e}}$	$Q(\mathrm{X})^{b / \mathrm{e}}$
${\mathrm{HC}-\mathrm{PH}_{3} \mathbf{~ 1 b}}^{\mathrm{HC}-\mathrm{SH}_{2} \mathbf{2 b}}$	52.3	0.2	115.0	-0.620	0.691

${ }^{a} E_{\mathrm{pt}}$ and ΔE denote the proton-transfer energy and internal rotation barrier, respectively, calculated at the MP4SDTQ/6-311++G(2d,p)//MP2/ $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})+$ ZPE level. ${ }^{b} \mathrm{H}-\mathrm{C}-\mathrm{X}$ and Q (the charge on atomic centers) are predicted at the MP2/6-311++G(d,p) level.
energy values of the transition states $\mathbf{1 c}, \mathbf{2 c}$ and $\mathbf{3 c}(-12.4,-8.6$ and $-2.6 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively) and the large negative relative energy values of the insertion products $\mathbf{1 d}, \mathbf{2 d}$ and $\mathbf{3 d}$ $\left(-95.7,-92.7\right.$ and $-90.4 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively) indicate that the CH insertion reactions with $\mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{~S}$ and HCl are all feasible and strongly exothermic.

In the following we focus on the addition complexes. Table 1 lists the binding energies and the $\mathrm{C}-\mathrm{X}$ bond distances of the intermediate addition complexes $\mathbf{m b}(m=1-6)$, together with the $\mathrm{C}-\mathrm{X}$ bond lengths of the insertion products (md). As shown in Table 1, 1b $\left(\mathrm{HC}-\mathrm{PH}_{3}\right)$ and $\mathbf{2 b}\left(\mathrm{HC}-\mathrm{SH}_{2}\right)$ have very large binding energies and very short $\mathrm{C}-\mathrm{X}$ bond distances (1.723 and $1.751 \AA$, respectively) which are shorter than or comparable with the $\mathrm{C}-\mathrm{X}$ bond lengths (1.787 and 1.724 A) in $\mathbf{1 d}$ and 2 d , respectively. The binding energies for $\mathbf{3 b}, \mathbf{5 b}$ and $\mathbf{6 b}$ are all very small ($<10 \mathrm{kcal} \mathrm{mol}^{-1}$), and they all have very long $\mathrm{C}-\mathrm{X}$ bond distances compared with those in their respective insertion products. Although the binding energy for $\mathbf{4 b}$ is quite large (about half the value for its analogue $\mathbf{1 b}$), the $\mathrm{C}-\mathrm{N}$ bond distance $(1.588 \AA)$ in $\mathbf{4 b}$ is significantly longer than that (1.398 \AA) in $\mathbf{4 d}$. It is also noted that the HCX angles in $\mathbf{1 b}$ and $\mathbf{2 b}$ (115.0 and 103.3°, respectively) are significantly larger than 90° while the HCX angles in the other complexes (also see ref. 1) are close to 90°. It is concluded that $\mathbf{1 b}$ and $\mathbf{2 b}$ are different from the other complexes which are the loosely bound lone-pair (of the X -atom) donor-acceptor complexes. ${ }^{1}$

The P - and S-ylides $\left(\mathrm{H}_{2} \mathrm{CPH}_{3}\right.$ and $\left.\mathrm{H}_{2} \mathrm{CSH}_{2}\right)$ are important reactants in synthetic organic chemistry. In our previous studies, ${ }^{1,3}$ we already noticed that the ${ }^{1} \mathrm{CH}_{2}$ insertion reactions into hydrides have similar reaction paths and similar energy profile skeletons to those for the CH insertion reactions. The P and S -ylides could be considered as the intermediate addition complexes in the ${ }^{1} \mathrm{CH}_{2}$ insertion reactions with PH_{3} and $\mathrm{H}_{2} \mathrm{~S}$, respectively (see ref. 7), and it is natural to infer that the CH addition complexes $\mathbf{1 b}$ and $\mathbf{2 b}$ are similar to the P - and S -ylides (although $\mathbf{1 b}$ and $\mathbf{2 b}$ are radicals). As a prototype of ylides the P-ylide has been extensively investigated by quantum chemists ${ }^{4-8}$ (its bonding nature is still being explored ${ }^{4}$), and the following features are known. The P -ylide has a short $\mathrm{C}-\mathrm{P}$ bond length ${ }^{4-6}$ (shorter than the length in $\mathrm{H}_{3} \mathrm{C}-\mathrm{PH}_{2}$) and very large binding energy towards ${ }^{1} \mathrm{CH}_{2}+\mathrm{PH}_{3}$. There is a large charge separation at its $\mathrm{C}^{-} \mathrm{P}^{+}$bond ${ }^{4,6,8}$ and the rotational barrier about this bond is extremely low. ${ }^{4,5,8}$ These features are considered as general features in the molecular and electronic structures of ylides.

Table 2 lists the calculated properties of $\mathbf{1 b}$ and $\mathbf{2 b}$. The proton-transfer energy ${ }^{8}\left(E_{\mathrm{pt}}\right)$ is defined as a criterion of
'hypervalency' in ylides, and we have defined the E_{pt} values for $\mathbf{m b}$ as the energy differences between $\mathbf{m b}$ and $\mathbf{m d}$. The binding energies and E_{pt} values for the P- and S-ylides can be evaluated based on the energetic results reported in ref. 7 which were calculated at the MP levels comparable to those in the present study. The large binding energies for $\mathbf{1 b}$ and $\mathbf{2 b}$ (43.4 and 22.1 $\mathrm{kcal} \mathrm{mol}^{-1}$, respectively) are somewhat smaller than those for the P- and S-ylides (54-74 and $27-48 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively). The E_{pt} values for $\mathbf{1 b}$ and $\mathbf{2 b}$ are 52.3 and $70.6 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively, which are comparable with those for the P - and S-ylides (53-59 and 73-81 kcal mol ${ }^{-1}$, respectively). The C-P bond length in $\mathbf{1 b}$ is only $0.046 \AA$ longer than the length of 1.677 $\AA^{4,5}$ [at the MP2/6-311+G(d,p) level] in the P-ylide, and the $\mathrm{C}-\mathrm{S}$ bond length in $\mathbf{2 b}$ is about $0.1 \AA$ longer than the length [1.635 \AA^{7} at the MP2/6-31G(d) level] in the S-ylide. The MP2 Mulliken charges on the C and P atoms in $\mathbf{1 b}$ are -0.620 and +0.691 , respectively (the MP2 charges of -0.76 and +0.55 for the P-ylide were reported in ref. 4) and the charges on the C and S atoms in $2 \mathbf{b}$ are -0.660 and +0.513 , respectively, which implies considerable charge separations in $\mathbf{1 b}$ and $\mathbf{2 b}$. The rotational barrier in $\mathbf{1 b}$ is extremely low $\left(0.2 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ as in the P-ylide ($c a .1 \mathrm{kcal} \mathrm{mol}^{-1}$ or less ${ }^{4,5}$), and the barrier in $\mathbf{2 b}$ is $7.1 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ (no reported post-SCF results for the barrier in the S-ylide are available).
$\mathbf{1 b}$ and $\mathbf{2 b}$ are not loosely bound complexes and they have ylidic features in their molecular and electronic structures. Since $\mathbf{1 b}$ and $\mathbf{2 b}$ exist in deep minima in the potential energy surfaces (Fig. 1), they might be observed in some experiments (spectroscopy, EPR, etc). We would expect the ylide-like radicals $\mathbf{1 b}$ and $\mathbf{2 b}$ to be useful in synthetic chemistry as are the P - and S-ylides.

We thank the NNSFC for the financial support.

Notes and References

\dagger E-mail: huaugmb@es1.gsbustc.ac.cn

1 Z.-X. Wang, R.-Z. Liu, M.-B. Huang and Z. H. Yu, Can. J. Chem., 1996, 74, 910.
2 Gaussian 94, Revision E.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, R. B. Stefanov, A. Nanayakkara, M. Challacombe, G. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
3 Z.-X. Wang and M.-B. Huang, Can. J. Chem., 1997, 75, 996.
4 N. Laszlo, V. Tamas and R. Jozsef, J. Phys. Chem., 1995, 99, 10142.
5 S. Bachrach, J. Org. Chem., 1992, 57, 4367.
6 T. Naito, S. Nagase and H. Yamataka, J. Am. Chem. Soc., 1994, 116, 10080.

7 B. F. Yates, W. J. Bouma and L. Radom, J. Am. Chem. Soc., 1989, 109, 2250.

8 R. A. Eades, P. C. Cassman and D. A. Dixon, J. Am. Chem. Soc., 1981, 103, 1066.

Received in Cambridge, UK, 20th February 1998; 8/01491D

