Expected and unexpected outcomes of a heteroborane isomerisation

Shirley Dunn, Georgina M. Rosair, Andrew S. Weller and Alan J. Welch*

Department of Chemistry, Heriot-Watt University, Edinburgh, UK EH14 4AS

Gentle thermolysis of compound 1, an intermediate in the isomerisation of an overcrowded icosahedral carbametallaborane, surprisingly yields two rearranged products, compound 2 (expected from theory) and compound 3 (unexpected).

There is a substantial and continuing interest in the isomerisations of heteroboranes and the mechanisms by which such isomerisations occur.¹ Recently² we reported the first experimental isolation of an intermediate in the isomerisation of an overcrowded, notional C_{cage} -adjacent icosahedral metallacarborane. We showed that this species has a closed, nonicosahedral structure which previously had been recognised only theoretically,³ and we demonstrated that it was a true intermediate by effecting its conversion to a C_{cage} -separated icosahedron on gentle warming.

We now report the results of initial experiments with a system where one boron vertex is tagged with an SMe₂ group, which allows significant new insight into the precise isomerisation mechanism.

Deprotonation of the recently reported carbaborane 7,8-Ph₂-9-SMe₂-7,8-nido-C₂B₉H₉^{4,5} with NaH in thf, followed by reaction with [MoBr(MeCN)₂(η^3 -C₃H₅)(CO)₂] at 0 °C, yields the neutral, charge-compensated species 1 in good yield.[‡] Compound 1 displays carbonyl stretching bands in the IR spectrum at relatively high frequency (1971 and 1917 cm⁻¹, CH₂Cl₂) which identify it as a potential non-icosahedron. This was confirmed by a crystallographic study§ which revealed the structure shown in Fig. 1. Thus compound 1 constitutes only the second example of a derivative of Wales' hypothetical '1,2- C_2 ' intermediate³ in the isomerisation of 1,2-closo-C₂B₁₀H₁₂ to 1,7-closo-C₂B₁₀H₁₂. However, the presence of the SMe₂ function attached to B(3) affords the possibility of mapping the movement of that boron atom when 1 is converted to the appropriate analogue of 1,7-closo-C₂B₁₀H₁₂, thus yielding valuable additional mechanistic information.

Fig. 2 Perspective view of 2. Selected bond distances (Å) and angles (°): Mo(2)-C(01) 1.947(3), Mo(2)-C(02) 1.931(3), Mo(2)-C(21) 2.360(3), Mo(2)-C(22) 2.236(3), Mo(2)-C(23) 2.355(3), C(01)-O(01) 1.159(4), C(02)-O(02) 1.155(3), C(1)-C(101) 1.521(3), C(8)-C(801) 1.512(4), B(6)-S(1) 1.937(3); C(01)-Mo(2)-C(02) 77.73(13).

To our considerable surprise, gentle thermolysis (thf reflux) of **1** affords two new carbametallaboranes, compounds **2** and **3**, isolated by thin layer chromatography in reasonable yields.[‡] Both display carbonyl stretching IR bands at low frequencies relative to those in **1** (1936 and 1853 cm⁻¹ in **2**; 1931 and 1840 cm⁻¹ in **3**) as expected for icosahedral compounds. Structural study of **2** and of **3**§ confirmed this prediction. Compound **2** (Fig. 2) has a 1,8-Ph₂-2-(η^3 -C₃H_5)-2,2-(CO)₂-6-SMe₂-2,1,8-*closo*-MoC₂B₉H₈ architecture whereas in compound **3** (Fig. 3) the SMe₂ group is bound to B(7), *i.e.* **3** is 1,8-Ph₂-2-(η^3 -C₃H_5)-2,2-(CO)₂-7-SMe₂-2,1,8-*closo*-MoC₂B₉H₈. The overall reaction scheme is shown in Scheme 1, compound **4**

Fig. 1 Perspective view of 1 (numbered as in ref. 3). Selected bond distances (Å) and angles (°): Mo(5)-C(51) 1.973(4), Mo(5)-C(52) 1.989(4), Mo(5)-C(53) 2.374(4), Mo(5)-C(54) 2.243(4), Mo(5)-C(55) 2.362(4), C(51)-O(51) 1.152(4), C(52)-O(52) 1.153(4), C(1)-C(11) 1.506(4), C(2)-C(21) 1.493(3), B(3)-S(1) 1.934(3); C(51)-Mo(5)-C(52) 76.57(14).

Fig. 3 Perspective view of 3. Selected bond distances (Å) and angles (°): Mo(2)–C(01) 1.974(8), Mo(2)–C(02) 1.929(9), Mo(2)–C(21) 2.368(9), Mo(2)–C(22) 2.201(9), Mo(2)–C(23) 2.370(9), C(01)–O(01) 1.152(10), C(02)–O(02) 1.170(10), C(1)–C(101) 1.513(9), C(8)–C(801) 1.509(9), B(7)–S(1) 1.936(7); C(01)–Mo(2)–C(02) 85.1(3).

Chem. Commun., 1998 1065

Scheme 1 Reaction scheme for formation of compound **1** from the notional overcrowded precursor **4**, and subsequent tranformation of **1** into both **2** and **3**. The pathways identified as 'predicted' are those which are in agreement with the predictions of ref. 3. [Mo] = $Mo(\eta^3-C_3H_5)(CO)_2$.

representing the likely non-isolable (overcrowded) initial reaction product. To support the assumption that the B–S bond remains intact under the conditions of gentle thermolysis employed, a sample of 7,8-Ph₂-9-SMe₂-7,8-*nido*-C₂B₉H₉ was heated to reflux in thf for 1 h and was recovered unchanged (¹H NMR spectroscopy).

As far as the relative positions of the cage carbon atoms is concerned both **2** and **3** are examples of $`1,7-I_h'$ species. According to Wales³ $1,2-I_h C_2B_{10}H_{12}$ is predicted to transform to the $1,2-C_2 C_2B_{10}H_{12}$ intermediate *via* a single route, whereas $1,2-C_2 C_2B_{10}H_{12}$ can rearrange to $1,7-I_h C_2B_{10}H_{12}$ *via* two possible routes, all pathways involving low symmetry transition states. We have successfully tracked the transformation of **4** into the isolated intermediate **1**, and one pathway for the subsequent transformation of **1** into **2**, thus providing experimental support for these theoretical predictions. However, the conversion of **1** into the unexpected product **3** must occur *via a* pathway not currently articulated, and clearly demonstrates that further experimental and theoretical work in this fascinating area is warranted.

We thank the EPSRC and the Callery Chemical Co. for support.

Notes and References

† E-mail: a.j.welch@hw.ac.uk

‡ Syntheses and selected data: 1: 7,8-Ph₂-9-SMe₂-7,8-*nido*-C₂B₉H₉^{4,5} (1.73 mmol) in thf (30 ml) was deprotonated with an excess of NaH, then added to a stirring solution of $[MoBr(MeCN)_2(\eta^3-C_3H_5)(CO)_2]$ (1.73 mmol) in thf (10 ml) at 0 °C. The solution was allowed to warm to room temp. and stirred for a total of 2 h. Removal of solvent *in vacuo* and work up by column chromatography [silica, CH₂Cl₂–light petroleum (7:3)] afforded a single orange band. Recrystallisation from CH₂Cl₂–light petroleum at 4 °C afforded diffraction-quality crystals of compound 1 (65% yield). IR (CH₂Cl₂) ν/cm^{-1} : 2554 (br, B–H), 1971 (vs, CO), 1917 (m, CO). ¹H NMR (200 MHz, CDCl₃), δ 7.85 (m, 2 H, Ph), 7.72 (m, 2 H, Ph), 7.38–7.19 (m,

6 H, Ph), 3.81 (m, 1 H, allyl_{centre}), 2.68 (dd, 1 H, allyl_{syn}), 2.55 (s, 3 H, SMe), 2.46 (dd, 1 H, allyl_{syn}), 2.15 (s, 3 H, SMe), 1.90 (d, 1 H, allyl_{anti}), 1.18 (d br, 1 H, allyl_{anti}); ${}^{11}B{}^{1}H{}$ NMR (124.8 MHz, CDCl₃), δ 15.1 (1 B), 6.8 (2 B), 1.9 (2 B), -3.8 (1 B), -15.0 (1 B), -24.1 (2 B).

2 and 3: compound 1 (0.41 mmol) was dissolved in thf (15 ml) and heated to reflux for 1 h. Solvent was removed in vacuo and the residue applied as a concentrated CH2Cl2 solution to a TLC plate. Elution with CH2Cl2-light petroleum (2:3) (under a nitrogen atmosphere) afforded two mobile bands, compounds 2 (R_f ca. 0.30) and 3 (R_f ca. 0.35). Both bands were recovered and recrystallised from CH₂Cl₂-light petroleum at 4 $^\circ$ C to afford diffraction-quality crystals in 54 and 31% yield, respectively. 2: IR (CH₂Cl₂) v/cm⁻¹: 2569 (br, B–H), 1936 (vs, CO), 1853: (s, CO). ¹H NMR (200 MHz, CDCl₃), δ 7.43 (m, 2 H, Ph), 7.29–7.10 (m, 8 H, Ph), 4.19 (m, 1 H, allyl_{centre}), 3.32 (dd, 1 H, allyl_{svn}), 2.93 (s, SMe), 2.21 (s, SMe), 2.39 $(dd, 1 H, allyl_{syn}), 1.42 (d, 1 H, allyl_{anti}), 1.32 (d, 1 H, allyl_{anti}); {}^{11}B{}^{1}H$ NMR (128.4 MHz, CDCl₃), δ 2.7 (1 B), -1.4 (1 B), -3.4 (1 B), -4.3 (1 B), -7.4 (2 B), -12.1 (2 B), -14.5 (1 B). **3**: IR (CH₂Cl₂) v/cm⁻¹: 2559 (m br, B-H), 1931 (vs, CO), 1840 (vs, CO). ¹H NMR (200 MHz, CDCl₃), δ7.57 (m, 2 H, Ph), 7.38-6.87 (m, 8 H, Ph), 3.71 (dd, 1 H, allylsvn), 3.18 (m, 1 H, allyl_{centre}), 2.59 (apparent s, 6 H, 2 × SMe), 1.80 (d, 1 H, allyl_{svn}), 1.62 (dd, 1 H, allyl_{anti}), 1.22 (d, 1 H, allyl_{anti}); ¹¹B{¹H} NMR (128.4 MHz, CDCl₃), δ 4.4 (1 B), 0.8 (1 B), -5.5 (3 B), -9.2 (1 B), -11.1 (sh, 1 B), -11.6 (1 B), -13.2 (1 B).

§ *Crystallographic data*: **1**: C₂₁H₂₉B₉MoO₂S, *M*_r = 538.7, crystal size 0.4 × 0.4 × 0.8 mm, monoclinic, space group *P*2₁/*n*, *a* = 13.4348(9), *b* = 10.7968(8), *c* = 19.0756(13) Å, *β* = 110.320(7)°, *U* = 2594.8(3) Å³, *Z* = 4, *D*_c = 1.379 g cm⁻³, *F*(000) = 1096, *μ* = 0.60 mm⁻¹. Siemens P4 diffractometer, 293(2) K, Mo-Kα radiation, *λ* = 0.71073 Å, 2*θ*_{max} = 50°, 4567 unique reflections, 3456 observed [*F*_o > 4σ(*F*_o)], corrections for absorption (*ψ*-scans), Lorentz and polarisation effects. Structure solved by direct methods and refined (on *F*²) by full-matrix least squares (339 variables) to *R*₁ = 0.0337, *wR*₂ = 0.0680 (for observed data), *S* = 1063. Max., min. residual electron density 0.25, -0.30 e Å⁻³.

2: $C_{21}H_{29}B_9MOO_2S$, $M_r = 538.7$, crystal size $0.4 \times 0.4 \times 0.8$ mm, monoclinic, space group $P_{2_1/n}$, a = 11.8254(10), b = 11.5468(7), c = 19.7695(11) Å, $\beta = 107.277(5)^\circ$, U = 2577.6(3) Å³, Z = 4, $D_c = 1.388$ g cm⁻³, F(000) = 1096, $\mu = 0.61$ mm⁻¹. Siemens P4 diffractometer, 293(2) K, Mo-K\alpha radiation, $\lambda = 0.71073$ Å, $2\theta_{max} = 50^\circ$, 4539 unique reflections, 3639 observed [$F_o > 4\sigma(F_o)$], corrections for absorption (ψ -scans), Lorentz and polarisation effects. Structure solved by direct methods and refined (on F^2) by full-matrix least squares (307 variables) to $R_1 = 0.0298$, $wR_2 = 0.0666$ (for observed data), S = 1094. Max., min. residual electron density 0.29, -0.40 e Å⁻³.

3: C₂₁H₂₉B₉MoO₂S, $M_r = 538.7$, crystal size $0.1 \times 0.3 \times 0.4$ mm, monoclinic, space group $P2_1/n$, a = 12.8226(12), b = 13.840(2), c = 15.3573(14) Å, $\beta = 109.733(7)^\circ$, U = 2565.4(5) Å³, Z = 4, $D_c = 1.395$ g cm⁻³, F(000) = 1096, $\mu = 0.61$ mm⁻¹. Siemens P4 diffractometer, 293(2) K, Mo-Ka radiation, $\lambda = 0.71073$ Å, $2\theta_{max} = 50^\circ$, 4475 unique reflections, 2881 observed [$F_o > 4\sigma(F_o)$], corrections for absorption (ψ -scans), Lorentz and polarisation effects. Structure solved by direct methods and refined (on F^2) by full-matrix least squares (307 variables) to $R_1 = 0.0622$, $wR_2 = 0.1420$ (for observed data), S = 1.047. Max., min. residual electron density 1.78, -0.75 e Å⁻³. CCDC 182/819.

- 1 A. J. Welch and A. S. Weller, J. Chem. Soc., Dalton Trans., 1997, 1205 and references therein.
- 2 S. Dunn, G. M. Rosair, Rh. Ll. Thomas, A. S. Weller and A. J. Welch, *Angew. Chem., Int. Ed. Engl.*, 1997, **36**, 645.
- 3 D. J. Wales, *J. Am. Chem. Soc.*, 1993, **115**, 1557. A most helpful animation of the isomerisation processes considered in this paper is available on the World Wide Web (http://brian.ch.cam.ac.uk/ publications.html).
- 4 G. M. Rosair, A. J. Welch, A. S. Weller and S. K. Zahn, J. Organomet. Chem., 1997, 536, 299.
- 5 G. M. Rosair, A. J. Welch and A. S. Weller, *Organometallics* 1998, in press.

Received in Cambridge, UK, 18th December 1997; 7/09061G